Abstract
This paper presents a language-independent approach for morphological disambiguation which has been regarded as an extension of POS tagging, jointly predicting complex morphological tags. In the proposed approach, all words, roots, POS and morpheme tags are embedded into vectors, and contexts representations from surface word and morphological contexts are calculated. Then the inner products between analyses and the context’s representations are computed to perform the disambiguation. The underlying hypothesis is that the correct morphological analysis should be closer to the context in a vector space. Experimental results show that the proposed approach outperforms the existing models on seven different language datasets. Concretely, compared with the baselines of MarMot and a sophisticated neural model (Seq2Seq), the proposed approach achieves around 6% improvement in average accuracy for all languages while running about 6 and 33 times faster than MarMot and Seq2Seq, respectively.- Anthology ID:
- 2022.coling-1.470
- Volume:
- Proceedings of the 29th International Conference on Computational Linguistics
- Month:
- October
- Year:
- 2022
- Address:
- Gyeongju, Republic of Korea
- Editors:
- Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim, James Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli, Heng Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm, Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond, Seung-Hoon Na
- Venue:
- COLING
- SIG:
- Publisher:
- International Committee on Computational Linguistics
- Note:
- Pages:
- 5288–5297
- Language:
- URL:
- https://aclanthology.org/2022.coling-1.470
- DOI:
- Cite (ACL):
- Alymzhan Toleu, Gulmira Tolegen, and Rustam Mussabayev. 2022. Language-Independent Approach for Morphological Disambiguation. In Proceedings of the 29th International Conference on Computational Linguistics, pages 5288–5297, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.
- Cite (Informal):
- Language-Independent Approach for Morphological Disambiguation (Toleu et al., COLING 2022)
- PDF:
- https://preview.aclanthology.org/nschneid-patch-4/2022.coling-1.470.pdf