Abstract
BERTScore, a recently proposed automatic metric for machine translation quality, uses BERT, a large pre-trained language model to evaluate candidate translations with respect to a gold translation. Taking advantage of BERT’s semantic and syntactic abilities, BERTScore seeks to avoid the flaws of earlier approaches like BLEU, instead scoring candidate translations based on their semantic similarity to the gold sentence. However, BERT is not infallible; while its performance on NLP tasks set a new state of the art in general, studies of specific syntactic and semantic phenomena have shown where BERT’s performance deviates from that of humans more generally. This naturally raises the questions we address in this paper: what are the strengths and weaknesses of BERTScore? Do they relate to known weaknesses on the part of BERT? We find that while BERTScore can detect when a candidate differs from a reference in important content words, it is less sensitive to smaller errors, especially if the candidate is lexically or stylistically similar to the reference.- Anthology ID:
- 2021.wmt-1.59
- Volume:
- Proceedings of the Sixth Conference on Machine Translation
- Month:
- November
- Year:
- 2021
- Address:
- Online
- Editors:
- Loic Barrault, Ondrej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussa, Christian Federmann, Mark Fishel, Alexander Fraser, Markus Freitag, Yvette Graham, Roman Grundkiewicz, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Tom Kocmi, Andre Martins, Makoto Morishita, Christof Monz
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 507–517
- Language:
- URL:
- https://aclanthology.org/2021.wmt-1.59
- DOI:
- Cite (ACL):
- Michael Hanna and Ondřej Bojar. 2021. A Fine-Grained Analysis of BERTScore. In Proceedings of the Sixth Conference on Machine Translation, pages 507–517, Online. Association for Computational Linguistics.
- Cite (Informal):
- A Fine-Grained Analysis of BERTScore (Hanna & Bojar, WMT 2021)
- PDF:
- https://preview.aclanthology.org/nschneid-patch-4/2021.wmt-1.59.pdf