NUIG-DSI at the WebNLG+ challenge: Leveraging Transfer Learning for RDF-to-text generation

Nivranshu Pasricha, Mihael Arcan, Paul Buitelaar


Abstract
This paper describes the system submitted by NUIG-DSI to the WebNLG+ challenge 2020 in the RDF-to-text generation task for the English language. For this challenge, we leverage transfer learning by adopting the T5 model architecture for our submission and fine-tune the model on the WebNLG+ corpus. Our submission ranks among the top five systems for most of the automatic evaluation metrics achieving a BLEU score of 51.74 over all categories with scores of 58.23 and 45.57 across seen and unseen categories respectively.
Anthology ID:
2020.webnlg-1.15
Volume:
Proceedings of the 3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+)
Month:
12
Year:
2020
Address:
Dublin, Ireland (Virtual)
Editors:
Thiago Castro Ferreira, Claire Gardent, Nikolai Ilinykh, Chris van der Lee, Simon Mille, Diego Moussallem, Anastasia Shimorina
Venue:
WebNLG
SIG:
SIGGEN
Publisher:
Association for Computational Linguistics
Note:
Pages:
137–143
Language:
URL:
https://aclanthology.org/2020.webnlg-1.15
DOI:
Bibkey:
Cite (ACL):
Nivranshu Pasricha, Mihael Arcan, and Paul Buitelaar. 2020. NUIG-DSI at the WebNLG+ challenge: Leveraging Transfer Learning for RDF-to-text generation. In Proceedings of the 3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+), pages 137–143, Dublin, Ireland (Virtual). Association for Computational Linguistics.
Cite (Informal):
NUIG-DSI at the WebNLG+ challenge: Leveraging Transfer Learning for RDF-to-text generation (Pasricha et al., WebNLG 2020)
Copy Citation:
PDF:
https://preview.aclanthology.org/nschneid-patch-4/2020.webnlg-1.15.pdf
Data
DBpedia