Abstract
This paper describes the IRlab@IIT-BHU system for the OffensEval 2020. We take the SVM with TF-IDF features to identify and categorize hate speech and offensive language in social media for two languages. In subtask A, we used a linear SVM classifier to detect abusive content in tweets, achieving a macro F1 score of 0.779 and 0.718 for Arabic and Greek, respectively.- Anthology ID:
- 2020.semeval-1.265
- Volume:
- Proceedings of the Fourteenth Workshop on Semantic Evaluation
- Month:
- December
- Year:
- 2020
- Address:
- Barcelona (online)
- Editors:
- Aurelie Herbelot, Xiaodan Zhu, Alexis Palmer, Nathan Schneider, Jonathan May, Ekaterina Shutova
- Venue:
- SemEval
- SIG:
- SIGLEX
- Publisher:
- International Committee for Computational Linguistics
- Note:
- Pages:
- 2012–2016
- Language:
- URL:
- https://aclanthology.org/2020.semeval-1.265
- DOI:
- 10.18653/v1/2020.semeval-1.265
- Cite (ACL):
- Anita Saroj, Supriya Chanda, and Sukomal Pal. 2020. IRlab@IITV at SemEval-2020 Task 12: Multilingual Offensive Language Identification in Social Media Using SVM. In Proceedings of the Fourteenth Workshop on Semantic Evaluation, pages 2012–2016, Barcelona (online). International Committee for Computational Linguistics.
- Cite (Informal):
- IRlab@IITV at SemEval-2020 Task 12: Multilingual Offensive Language Identification in Social Media Using SVM (Saroj et al., SemEval 2020)
- PDF:
- https://preview.aclanthology.org/nschneid-patch-4/2020.semeval-1.265.pdf