Vincent Auvray


2023

pdf
Multi-User MultiWOZ: Task-Oriented Dialogues among Multiple Users
Yohan Jo | Xinyan Zhao | Arijit Biswas | Nikoletta Basiou | Vincent Auvray | Nikolaos Malandrakis | Angeliki Metallinou | Alexandros Potamianos
Findings of the Association for Computational Linguistics: EMNLP 2023

While most task-oriented dialogues assume conversations between the agent and one user at a time, dialogue systems are increasingly expected to communicate with multiple users simultaneously who make decisions collaboratively. To facilitate development of such systems, we release the Multi-User MultiWOZ dataset: task-oriented dialogues among two users and one agent. To collect this dataset, each user utterance from MultiWOZ 2.2 was replaced with a small chat between two users that is semantically and pragmatically consistent with the original user utterance, thus resulting in the same dialogue state and system response. These dialogues reflect interesting dynamics of collaborative decision-making in task-oriented scenarios, e.g., social chatter and deliberation. Supported by this data, we propose the novel task of multi-user contextual query rewriting: to rewrite a task-oriented chat between two users as a concise task-oriented query that retains only task-relevant information and that is directly consumable by the dialogue system. We demonstrate that in multi-user dialogues, using predicted rewrites substantially improves dialogue state tracking without modifying existing dialogue systems that are trained for single-user dialogues. Further, this method surpasses training a medium-sized model directly on multi-user dialogues and generalizes to unseen domains.

2021

pdf
Alexa Conversations: An Extensible Data-driven Approach for Building Task-oriented Dialogue Systems
Anish Acharya | Suranjit Adhikari | Sanchit Agarwal | Vincent Auvray | Nehal Belgamwar | Arijit Biswas | Shubhra Chandra | Tagyoung Chung | Maryam Fazel-Zarandi | Raefer Gabriel | Shuyang Gao | Rahul Goel | Dilek Hakkani-Tur | Jan Jezabek | Abhay Jha | Jiun-Yu Kao | Prakash Krishnan | Peter Ku | Anuj Goyal | Chien-Wei Lin | Qing Liu | Arindam Mandal | Angeliki Metallinou | Vishal Naik | Yi Pan | Shachi Paul | Vittorio Perera | Abhishek Sethi | Minmin Shen | Nikko Strom | Eddie Wang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstrations

Traditional goal-oriented dialogue systems rely on various components such as natural language understanding, dialogue state tracking, policy learning and response generation. Training each component requires annotations which are hard to obtain for every new domain, limiting scalability of such systems. Similarly, rule-based dialogue systems require extensive writing and maintenance of rules and do not scale either. End-to-End dialogue systems, on the other hand, do not require module-specific annotations but need a large amount of data for training. To overcome these problems, in this demo, we present Alexa Conversations, a new approach for building goal-oriented dialogue systems that is scalable, extensible as well as data efficient. The components of this system are trained in a data-driven manner, but instead of collecting annotated conversations for training, we generate them using a novel dialogue simulator based on a few seed dialogues and specifications of APIs and entities provided by the developer. Our approach provides out-of-the-box support for natural conversational phenomenon like entity sharing across turns or users changing their mind during conversation without requiring developers to provide any such dialogue flows. We exemplify our approach using a simple pizza ordering task and showcase its value in reducing the developer burden for creating a robust experience. Finally, we evaluate our system using a typical movie ticket booking task integrated with live APIs and show that the dialogue simulator is an essential component of the system that leads to over 50% improvement in turn-level action signature prediction accuracy.

pdf
OodGAN: Generative Adversarial Network for Out-of-Domain Data Generation
Petr Marek | Vishal Ishwar Naik | Anuj Goyal | Vincent Auvray
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Papers

Detecting an Out-of-Domain (OOD) utterance is crucial for a robust dialog system. Most dialog systems are trained on a pool of annotated OOD data to achieve this goal. However, collecting the annotated OOD data for a given domain is an expensive process. To mitigate this issue, previous works have proposed generative adversarial networks (GAN) based models to generate OOD data for a given domain automatically. However, these proposed models do not work directly with the text. They work with the text’s latent space instead, enforcing these models to include components responsible for encoding text into latent space and decoding it back, such as auto-encoder. These components increase the model complexity, making it difficult to train. We propose OodGAN, a sequential generative adversarial network (SeqGAN) based model for OOD data generation. Our proposed model works directly on the text and hence eliminates the need to include an auto-encoder. OOD data generated using OodGAN model outperforms state-of-the-art in OOD detection metrics for ROSTD (67% relative improvement in FPR 0.95) and OSQ datasets (28% relative improvement in FPR 0.95)