Sonse Shimaoka


2017

pdf
Neural Architectures for Fine-grained Entity Type Classification
Sonse Shimaoka | Pontus Stenetorp | Kentaro Inui | Sebastian Riedel
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers

In this work, we investigate several neural network architectures for fine-grained entity type classification and make three key contributions. Despite being a natural comparison and addition, previous work on attentive neural architectures have not considered hand-crafted features and we combine these with learnt features and establish that they complement each other. Additionally, through quantitative analysis we establish that the attention mechanism learns to attend over syntactic heads and the phrase containing the mention, both of which are known to be strong hand-crafted features for our task. We introduce parameter sharing between labels through a hierarchical encoding method, that in low-dimensional projections show clear clusters for each type hierarchy. Lastly, despite using the same evaluation dataset, the literature frequently compare models trained using different data. We demonstrate that the choice of training data has a drastic impact on performance, which decreases by as much as 9.85% loose micro F1 score for a previously proposed method. Despite this discrepancy, our best model achieves state-of-the-art results with 75.36% loose micro F1 score on the well-established Figer (GOLD) dataset and we report the best results for models trained using publicly available data for the OntoNotes dataset with 64.93% loose micro F1 score.

2016

pdf
An Attentive Neural Architecture for Fine-grained Entity Type Classification
Sonse Shimaoka | Pontus Stenetorp | Kentaro Inui | Sebastian Riedel
Proceedings of the 5th Workshop on Automated Knowledge Base Construction

2014

pdf
Finding The Best Model Among Representative Compositional Models
Masayasu Muraoka | Sonse Shimaoka | Kazeto Yamamoto | Yotaro Watanabe | Naoaki Okazaki | Kentaro Inui
Proceedings of the 28th Pacific Asia Conference on Language, Information and Computing