Shayne Longpre


2024

pdf
A Pretrainer’s Guide to Training Data: Measuring the Effects of Data Age, Domain Coverage, Quality, & Toxicity
Shayne Longpre | Gregory Yauney | Emily Reif | Katherine Lee | Adam Roberts | Barret Zoph | Denny Zhou | Jason Wei | Kevin Robinson | David Mimno | Daphne Ippolito
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Pretraining data design is critically under-documented and often guided by empirically unsupported intuitions. We pretrain models on data curated (1) at different collection times, (2) with varying toxicity and quality filters, and (3) with different domain compositions. First, we find that temporal shift between evaluation data and pretraining data leads to performance degradation, which is not overcome by finetuning. Second, we measure the effect of quality and toxicity filters, showing a trade-off between performance on standard benchmarks and risk of toxic generations. We also find that the effects of different types of filtering are not predictable from text domain characteristics. Third, we empirically validate that heterogeneous data sources, like books and web, are beneficial and warrant greater prioritization. To date, these experiments constitute the single largest publicly documented empirical study of the effects of pretraining data. Spanning 28 unique 1.5 billion parameter models pretrained from scratch, these findings validate, quantify, and expose many undocumented intuitions about text pretraining, which ultimately support more informed data-centric decisions in model development.

2022

pdf
Combining Compressions for Multiplicative Size Scaling on Natural Language Tasks
Rajiv Movva | Jinhao Lei | Shayne Longpre | Ajay Gupta | Chris DuBois
Proceedings of the 29th International Conference on Computational Linguistics

Quantization, knowledge distillation, and magnitude pruning are among the most popular methods for neural network compression in NLP. Independently, these methods reduce model size and can accelerate inference, but their relative benefit and combinatorial interactions have not been rigorously studied. For each of the eight possible subsets of these techniques, we compare accuracy vs. model size tradeoffs across six BERT architecture sizes and eight GLUE tasks. We find that quantization and distillation consistently provide greater benefit than pruning. Surprisingly, except for the pair of pruning and quantization, using multiple methods together rarely yields diminishing returns. Instead, we observe complementary and super-multiplicative reductions to model size. Our work quantitatively demonstrates that combining compression methods can synergistically reduce model size, and that practitioners should prioritize (1) quantization, (2) knowledge distillation, and (3) pruning to maximize accuracy vs. model size tradeoffs.

pdf
You reap what you sow: On the Challenges of Bias Evaluation Under Multilingual Settings
Zeerak Talat | Aurélie Névéol | Stella Biderman | Miruna Clinciu | Manan Dey | Shayne Longpre | Sasha Luccioni | Maraim Masoud | Margaret Mitchell | Dragomir Radev | Shanya Sharma | Arjun Subramonian | Jaesung Tae | Samson Tan | Deepak Tunuguntla | Oskar Van Der Wal
Proceedings of BigScience Episode #5 -- Workshop on Challenges & Perspectives in Creating Large Language Models

Evaluating bias, fairness, and social impact in monolingual language models is a difficult task. This challenge is further compounded when language modeling occurs in a multilingual context. Considering the implication of evaluation biases for large multilingual language models, we situate the discussion of bias evaluation within a wider context of social scientific research with computational work. We highlight three dimensions of developing multilingual bias evaluation frameworks: (1) increasing transparency through documentation, (2) expanding targets of bias beyond gender, and (3) addressing cultural differences that exist between languages. We further discuss the power dynamics and consequences of training large language models and recommend that researchers remain cognizant of the ramifications of developing such technologies.

pdf bib
Proceedings of the Workshop on Multilingual Information Access (MIA)
Akari Asai | Eunsol Choi | Jonathan H. Clark | Junjie Hu | Chia-Hsuan Lee | Jungo Kasai | Shayne Longpre | Ikuya Yamada | Rui Zhang
Proceedings of the Workshop on Multilingual Information Access (MIA)

pdf
Pivot Through English: Reliably Answering Multilingual Questions without Document Retrieval
Ivan Montero | Shayne Longpre | Ni Lao | Andrew Frank | Christopher DuBois
Proceedings of the Workshop on Multilingual Information Access (MIA)

Existing methods for open-retrieval question answering in lower resource languages (LRLs) lag significantly behind English. They not only suffer from the shortcomings of non-English document retrieval, but are reliant on language-specific supervision for either the task or translation. We formulate a task setup more realistic to available resources, that circumvents document retrieval to reliably transfer knowledge from English to lower resource languages. Assuming a strong English question answering model or database, we compare and analyze methods that pivot through English: to map foreign queries to English and then English answers back to target language answers. Within this task setup we propose Reranked Multilingual Maximal Inner Product Search (RM-MIPS), akin to semantic similarity retrieval over the English training set with reranking, which outperforms the strongest baselines by 2.7% on XQuAD and 6.2% on MKQA. Analysis demonstrates the particular efficacy of this strategy over state-of-the-art alternatives in challenging settings: low-resource languages, with extensive distractor data and query distribution misalignment. Circumventing retrieval, our analysis shows this approach offers rapid answer generation to many other languages off-the-shelf, without necessitating additional training data in the target language.

pdf
MIA 2022 Shared Task: Evaluating Cross-lingual Open-Retrieval Question Answering for 16 Diverse Languages
Akari Asai | Shayne Longpre | Jungo Kasai | Chia-Hsuan Lee | Rui Zhang | Junjie Hu | Ikuya Yamada | Jonathan H. Clark | Eunsol Choi
Proceedings of the Workshop on Multilingual Information Access (MIA)

We present the results of the Workshop on Multilingual Information Access (MIA) 2022 Shared Task, evaluating cross-lingual open-retrieval question answering (QA) systems in 16 typologically diverse languages. In this task, we adapted two large-scale cross-lingual open-retrieval QA datasets in 14 typologically diverse languages, and newly annotated open-retrieval QA data in 2 underrepresented languages: Tagalog and Tamil. Four teams submitted their systems. The best constrained system uses entity-aware contextualized representations for document retrieval, thereby achieving an average F1 score of 31.6, which is 4.1 F1 absolute higher than the challenging baseline. The best system obtains particularly significant improvements in Tamil (20.8 F1), whereas most of the other systems yield nearly zero scores. The best unconstrained system achieves 32.2 F1, outperforming our baseline by 4.5 points.

2021

pdf
Open-Domain Question Answering Goes Conversational via Question Rewriting
Raviteja Anantha | Svitlana Vakulenko | Zhucheng Tu | Shayne Longpre | Stephen Pulman | Srinivas Chappidi
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We introduce a new dataset for Question Rewriting in Conversational Context (QReCC), which contains 14K conversations with 80K question-answer pairs. The task in QReCC is to find answers to conversational questions within a collection of 10M web pages (split into 54M passages). Answers to questions in the same conversation may be distributed across several web pages. QReCC provides annotations that allow us to train and evaluate individual subtasks of question rewriting, passage retrieval and reading comprehension required for the end-to-end conversational question answering (QA) task. We report the effectiveness of a strong baseline approach that combines the state-of-the-art model for question rewriting, and competitive models for open-domain QA. Our results set the first baseline for the QReCC dataset with F1 of 19.10, compared to the human upper bound of 75.45, indicating the difficulty of the setup and a large room for improvement.

pdf
On the Transferability of Minimal Prediction Preserving Inputs in Question Answering
Shayne Longpre | Yi Lu | Chris DuBois
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent work (Feng et al., 2018) establishes the presence of short, uninterpretable input fragments that yield high confidence and accuracy in neural models. We refer to these as Minimal Prediction Preserving Inputs (MPPIs). In the context of question answering, we investigate competing hypotheses for the existence of MPPIs, including poor posterior calibration of neural models, lack of pretraining, and “dataset bias” (where a model learns to attend to spurious, non-generalizable cues in the training data). We discover a perplexing invariance of MPPIs to random training seed, model architecture, pretraining, and training domain. MPPIs demonstrate remarkable transferability across domains achieving significantly higher performance than comparably short queries. Additionally, penalizing over-confidence on MPPIs fails to improve either generalization or adversarial robustness. These results suggest the interpretability of MPPIs is insufficient to characterize generalization capacity of these models. We hope this focused investigation encourages more systematic analysis of model behavior outside of the human interpretable distribution of examples.

pdf
MKQA: A Linguistically Diverse Benchmark for Multilingual Open Domain Question Answering
Shayne Longpre | Yi Lu | Joachim Daiber
Transactions of the Association for Computational Linguistics, Volume 9

Progress in cross-lingual modeling depends on challenging, realistic, and diverse evaluation sets. We introduce Multilingual Knowledge Questions and Answers (MKQA), an open- domain question answering evaluation set comprising 10k question-answer pairs aligned across 26 typologically diverse languages (260k question-answer pairs in total). Answers are based on heavily curated, language- independent data representation, making results comparable across languages and independent of language-specific passages. With 26 languages, this dataset supplies the widest range of languages to-date for evaluating question answering. We benchmark a variety of state- of-the-art methods and baselines for generative and extractive question answering, trained on Natural Questions, in zero shot and translation settings. Results indicate this dataset is challenging even in English, but especially in low-resource languages.1

pdf
Entity-Based Knowledge Conflicts in Question Answering
Shayne Longpre | Kartik Perisetla | Anthony Chen | Nikhil Ramesh | Chris DuBois | Sameer Singh
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Knowledge-dependent tasks typically use two sources of knowledge: parametric, learned at training time, and contextual, given as a passage at inference time. To understand how models use these sources together, we formalize the problem of knowledge conflicts, where the contextual information contradicts the learned information. Analyzing the behaviour of popular models, we measure their over-reliance on memorized information (the cause of hallucinations), and uncover important factors that exacerbate this behaviour. Lastly, we propose a simple method to mitigate over-reliance on parametric knowledge, which minimizes hallucination, and improves out-of-distribution generalization by 4% - 7%. Our findings demonstrate the importance for practitioners to evaluate model tendency to hallucinate rather than read, and show that our mitigation strategy encourages generalization to evolving information (i.e. time-dependent queries). To encourage these practices, we have released our framework for generating knowledge conflicts.

pdf
Evaluating Entity Disambiguation and the Role of Popularity in Retrieval-Based NLP
Anthony Chen | Pallavi Gudipati | Shayne Longpre | Xiao Ling | Sameer Singh
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Retrieval is a core component for open-domain NLP tasks. In open-domain tasks, multiple entities can share a name, making disambiguation an inherent yet under-explored problem. We propose an evaluation benchmark for assessing the entity disambiguation capabilities of these retrievers, which we call Ambiguous Entity Retrieval (AmbER) sets. We define an AmbER set as a collection of entities that share a name along with queries about those entities. By covering the set of entities for polysemous names, AmbER sets act as a challenging test of entity disambiguation. We create AmbER sets for three popular open-domain tasks: fact checking, slot filling, and question answering, and evaluate a diverse set of retrievers. We find that the retrievers exhibit popularity bias, significantly under-performing on rarer entities that share a name, e.g., they are twice as likely to retrieve erroneous documents on queries for the less popular entity under the same name. These experiments on AmbER sets show their utility as an evaluation tool and highlight the weaknesses of popular retrieval systems.

2020

pdf
How Effective is Task-Agnostic Data Augmentation for Pretrained Transformers?
Shayne Longpre | Yu Wang | Chris DuBois
Findings of the Association for Computational Linguistics: EMNLP 2020

Task-agnostic forms of data augmentation have proven widely effective in computer vision, even on pretrained models. In NLP similar results are reported most commonly for low data regimes, non-pretrained models, or situationally for pretrained models. In this paper we ask how effective these techniques really are when applied to pretrained transformers. Using two popular varieties of task-agnostic data augmentation (not tailored to any particular task), Easy Data Augmentation (Wei andZou, 2019) and Back-Translation (Sennrichet al., 2015), we conduct a systematic examination of their effects across 5 classification tasks, 6 datasets, and 3 variants of modern pretrained transformers, including BERT, XLNet, and RoBERTa. We observe a negative result, finding that techniques which previously reported strong improvements for non-pretrained models fail to consistently improve performance for pretrained transformers, even when training data is limited. We hope this empirical analysis helps inform practitioners where data augmentation techniques may confer improvements.

pdf bib
A Wrong Answer or a Wrong Question? An Intricate Relationship between Question Reformulation and Answer Selection in Conversational Question Answering
Svitlana Vakulenko | Shayne Longpre | Zhucheng Tu | Raviteja Anantha
Proceedings of the 5th International Workshop on Search-Oriented Conversational AI (SCAI)

The dependency between an adequate question formulation and correct answer selection is a very intriguing but still underexplored area. In this paper, we show that question rewriting (QR) of the conversational context allows to shed more light on this phenomenon and also use it to evaluate robustness of different answer selection approaches. We introduce a simple framework that enables an automated analysis of the conversational question answering (QA) performance using question rewrites, and present the results of this analysis on the TREC CAsT and QuAC (CANARD) datasets. Our experiments uncover sensitivity to question formulation of the popular state-of-the-art question answering approaches. Our results demonstrate that the reading comprehension model is insensitive to question formulation, while the passage ranking changes dramatically with a little variation in the input question. The benefit of QR is that it allows us to pinpoint and group such cases automatically. We show how to use this methodology to verify whether QA models are really learning the task or just finding shortcuts in the dataset, and better understand the frequent types of error they make.

2019

pdf
An Exploration of Data Augmentation and Sampling Techniques for Domain-Agnostic Question Answering
Shayne Longpre | Yi Lu | Zhucheng Tu | Chris DuBois
Proceedings of the 2nd Workshop on Machine Reading for Question Answering

To produce a domain-agnostic question answering model for the Machine Reading Question Answering (MRQA) 2019 Shared Task, we investigate the relative benefits of large pre-trained language models, various data sampling strategies, as well as query and context paraphrases generated by back-translation. We find a simple negative sampling technique to be particularly effective, even though it is typically used for datasets that include unanswerable questions, such as SQuAD 2.0. When applied in conjunction with per-domain sampling, our XLNet (Yang et al., 2019)-based submission achieved the second best Exact Match and F1 in the MRQA leaderboard competition.