This paper describes the structure and findings of the WILDRE 2024 shared task on Code-mixed Less-resourced Sentiment Analysis for Indo-Aryan Languages. The participants were asked to submit the test data’s final prediction on CodaLab. A total of fourteen teams registered for the shared task. Only four participants submitted the system for evaluation on CodaLab, with only two teams submitting the system description paper. While all systems show a rather promising performance, they outperform the baseline scores.
The internet has facilitated its user-base with a platform to communicate and express their views without any censorship. On the other hand, this freedom of expression or free speech can be abused by its user or a troll to demean an individual or a group. Demeaning people based on their gender, sexual orientation, religious believes or any other characteristics –trolling– could cause great distress in the online community. Hence, the content posted by a troll needs to be identified and dealt with before causing any more damage. Amongst all the forms of troll content, memes are most prevalent due to their popularity and ability to propagate across cultures. A troll uses a meme to demean, attack or offend its targetted audience. In this shared task, we provide a resource (TamilMemes) that could be used to train a system capable of identifying a troll meme in the Tamil language. In our TamilMemes dataset, each meme has been categorized into either a “troll” or a “not_troll” class. Along with the meme images, we also provided the Latin transcripted text from memes. We received 10 system submissions from the participants which were evaluated using the weighted average F1-score. The system with the weighted average F1-score of 0.55 secured the first rank.
A meme is a form of media that spreads an idea or emotion across the internet. As posting meme has become a new form of communication of the web, due to the multimodal nature of memes, postings of hateful memes or related events like trolling, cyberbullying are increasing day by day. Hate speech, offensive content and aggression content detection have been extensively explored in a single modality such as text or image. However, combining two modalities to detect offensive content is still a developing area. Memes make it even more challenging since they express humour and sarcasm in an implicit way, because of which the meme may not be offensive if we only consider the text or the image. Therefore, it is necessary to combine both modalities to identify whether a given meme is offensive or not. Since there was no publicly available dataset for multimodal offensive meme content detection, we leveraged the memes related to the 2016 U.S. presidential election and created the MultiOFF multimodal meme dataset for offensive content detection dataset. We subsequently developed a classifier for this task using the MultiOFF dataset. We use an early fusion technique to combine the image and text modality and compare it with a text- and an image-only baseline to investigate its effectiveness. Our results show improvements in terms of Precision, Recall, and F-Score. The code and dataset for this paper is published in https://github.com/bharathichezhiyan/Multimodal-Meme-Classification-Identifying-Offensive-Content-in-Image-and-Text
Hate speech detection in social media communication has become one of the primary concerns to avoid conflicts and curb undesired activities. In an environment where multilingual speakers switch among multiple languages, hate speech detection becomes a challenging task using methods that are designed for monolingual corpora. In our work, we attempt to analyze, detect and provide a comparative study of hate speech in a code-mixed social media text. We also provide a Hindi-English code-mixed data set consisting of Facebook and Twitter posts and comments. Our experiments show that deep learning models trained on this code-mixed corpus perform better.
This work addresses the classification problem defined by sub-task A (English only) of the OffensEval 2020 challenge. We used a semi-supervised approach to classify given tweets into an offensive (OFF) or not-offensive (NOT) class. As the OffensEval 2020 dataset is loosely labelled with confidence scores given by unsupervised models, we used last year’s offensive language identification dataset (OLID) to label the OffensEval 2020 dataset. Our approach uses a pseudo-labelling method to annotate the current dataset. We trained four text classifiers on the OLID dataset and the classifier with the highest macro-averaged F1-score has been used to pseudo label the OffensEval 2020 dataset. The same model which performed best amongst four text classifiers on OLID dataset has been trained on the combined dataset of OLID and pseudo labelled OffensEval 2020. We evaluated the classifiers with precision, recall and macro-averaged F1-score as the primary evaluation metric on the OLID and OffensEval 2020 datasets. This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://creativecommons.org/licenses/by/4.0/.
Social media are interactive platforms that facilitate the creation or sharing of information, ideas or other forms of expression among people. This exchange is not free from offensive, trolling or malicious contents targeting users or communities. One way of trolling is by making memes, which in most cases combines an image with a concept or catchphrase. The challenge of dealing with memes is that they are region-specific and their meaning is often obscured in humour or sarcasm. To facilitate the computational modelling of trolling in the memes for Indian languages, we created a meme dataset for Tamil (TamilMemes). We annotated and released the dataset containing suspected trolls and not-troll memes. In this paper, we use the a image classification to address the difficulties involved in the classification of troll memes with the existing methods. We found that the identification of a troll meme with such an image classifier is not feasible which has been corroborated with precision, recall and F1-score.
There is an increasing demand for sentiment analysis of text from social media which are mostly code-mixed. Systems trained on monolingual data fail for code-mixed data due to the complexity of mixing at different levels of the text. However, very few resources are available for code-mixed data to create models specific for this data. Although much research in multilingual and cross-lingual sentiment analysis has used semi-supervised or unsupervised methods, supervised methods still performs better. Only a few datasets for popular languages such as English-Spanish, English-Hindi, and English-Chinese are available. There are no resources available for Malayalam-English code-mixed data. This paper presents a new gold standard corpus for sentiment analysis of code-mixed text in Malayalam-English annotated by voluntary annotators. This gold standard corpus obtained a Krippendorff’s alpha above 0.8 for the dataset. We use this new corpus to provide the benchmark for sentiment analysis in Malayalam-English code-mixed texts.