Samta Kamboj


2022

pdf
DENTRA: Denoising and Translation Pre-training for Multilingual Machine Translation
Samta Kamboj | Sunil Kumar Sahu | Neha Sengupta
Proceedings of the Seventh Conference on Machine Translation (WMT)

In this paper, we describe our submission to the WMT-2022: Large-Scale Machine Translation Evaluation for African Languages under the Constrained Translation track. We introduce DENTRA, a novel pre-training strategy for a multilingual sequence-to-sequence transformer model. DENTRA pre-training combines denoising and translation objectives to incorporate both monolingual and bitext corpora in 24 African, English, and French languages. To evaluate the quality of DENTRA, we fine-tuned it with two multilingual machine translation configurations, one-to-many and many-to-one. In both pre-training and fine-tuning, we employ only the datasets provided by the organizers. We compare DENTRA against a strong baseline, M2M-100, in different African multilingual machine translation scenarios and show gains in 3 out of 4 subtasks.