2022
pdf
abs
ASL-Homework-RGBD Dataset: An Annotated Dataset of 45 Fluent and Non-fluent Signers Performing American Sign Language Homeworks
Saad Hassan
|
Matthew Seita
|
Larwan Berke
|
Yingli Tian
|
Elaine Gale
|
Sooyeon Lee
|
Matt Huenerfauth
Proceedings of the LREC2022 10th Workshop on the Representation and Processing of Sign Languages: Multilingual Sign Language Resources
We are releasing a dataset containing videos of both fluent and non-fluent signers using American Sign Language (ASL), which were collected using a Kinect v2 sensor. This dataset was collected as a part of a project to develop and evaluate computer vision algorithms to support new technologies for automatic detection of ASL fluency attributes. A total of 45 fluent and non-fluent participants were asked to perform signing homework assignments that are similar to the assignments used in introductory or intermediate level ASL courses. The data is annotated to identify several aspects of signing including grammatical features and non-manual markers. Sign language recognition is currently very data-driven and this dataset can support the design of recognition technologies, especially technologies that can benefit ASL learners. This dataset might also be interesting to ASL education researchers who want to contrast fluent and non-fluent signing.
pdf
abs
Using BERT Embeddings to Model Word Importance in Conversational Transcripts for Deaf and Hard of Hearing Users
Akhter Al Amin
|
Saad Hassan
|
Cecilia Alm
|
Matt Huenerfauth
Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion
Deaf and hard of hearing individuals regularly rely on captioning while watching live TV. Live TV captioning is evaluated by regulatory agencies using various caption evaluation metrics. However, caption evaluation metrics are often not informed by preferences of DHH users or how meaningful the captions are. There is a need to construct caption evaluation metrics that take the relative importance of words in transcript into account. We conducted correlation analysis between two types of word embeddings and human-annotated labelled word-importance scores in existing corpus. We found that normalized contextualized word embeddings generated using BERT correlated better with manually annotated importance scores than word2vec-based word embeddings. We make available a pairing of word embeddings and their human-annotated importance scores. We also provide proof-of-concept utility by training word importance models, achieving an F1-score of 0.57 in the 6-class word importance classification task.
2021
pdf
abs
Unpacking the Interdependent Systems of Discrimination: Ableist Bias in NLP Systems through an Intersectional Lens
Saad Hassan
|
Matt Huenerfauth
|
Cecilia Ovesdotter Alm
Findings of the Association for Computational Linguistics: EMNLP 2021
Much of the world’s population experiences some form of disability during their lifetime. Caution must be exercised while designing natural language processing (NLP) systems to prevent systems from inadvertently perpetuating ableist bias against people with disabilities, i.e., prejudice that favors those with typical abilities. We report on various analyses based on word predictions of a large-scale BERT language model. Statistically significant results demonstrate that people with disabilities can be disadvantaged. Findings also explore overlapping forms of discrimination related to interconnected gender and race identities.
2020
pdf
abs
An Isolated-Signing RGBD Dataset of 100 American Sign Language Signs Produced by Fluent ASL Signers
Saad Hassan
|
Larwan Berke
|
Elahe Vahdani
|
Longlong Jing
|
Yingli Tian
|
Matt Huenerfauth
Proceedings of the LREC2020 9th Workshop on the Representation and Processing of Sign Languages: Sign Language Resources in the Service of the Language Community, Technological Challenges and Application Perspectives
We have collected a new dataset consisting of color and depth videos of fluent American Sign Language (ASL) signers performing sequences of 100 ASL signs from a Kinect v2 sensor. This directed dataset had originally been collected as part of an ongoing collaborative project, to aid in the development of a sign-recognition system for identifying occurrences of these 100 signs in video. The set of words consist of vocabulary items that would commonly be learned in a first-year ASL course offered at a university, although the specific set of signs selected for inclusion in the dataset had been motivated by project-related factors. Given increasing interest among sign-recognition and other computer-vision researchers in red-green-blue-depth (RBGD) video, we release this dataset for use by the research community. In addition to the RGB video files, we share depth and HD face data as well as additional features of face, hands, and body produced through post-processing of this data.