Qiuping Huang


2022

pdf
Measuring and Improving Compositional Generalization in Text-to-SQL via Component Alignment
Yujian Gan | Xinyun Chen | Qiuping Huang | Matthew Purver
Findings of the Association for Computational Linguistics: NAACL 2022

In text-to-SQL tasks — as in much of NLP — compositional generalization is a major challenge: neural networks struggle with compositional generalization where training and test distributions differ. However, most recent attempts to improve this are based on word-level synthetic data or specific dataset splits to generate compositional biases. In this work, we propose a clause-level compositional example generation method. We first split the sentences in the Spider text-to-SQL dataset into sub-sentences, annotating each sub-sentence with its corresponding SQL clause, resulting in a new dataset Spider-SS. We then construct a further dataset, Spider-CG, by composing Spider-SS sub-sentences in different combinations, to test the ability of models to generalize compositionally. Experiments show that existing models suffer significant performance degradation when evaluated on Spider-CG, even though every sub-sentence is seen during training. To deal with this problem, we modify a number of state-of-the-art models to train on the segmented data of Spider-SS, and we show that this method improves the generalization performance.

2021

pdf
Towards Robustness of Text-to-SQL Models against Synonym Substitution
Yujian Gan | Xinyun Chen | Qiuping Huang | Matthew Purver | John R. Woodward | Jinxia Xie | Pengsheng Huang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Recently, there has been significant progress in studying neural networks to translate text descriptions into SQL queries. Despite achieving good performance on some public benchmarks, existing text-to-SQL models typically rely on the lexical matching between words in natural language (NL) questions and tokens in table schemas, which may render the models vulnerable to attacks that break the schema linking mechanism. In this work, we investigate the robustness of text-to-SQL models to synonym substitution. In particular, we introduce Spider-Syn, a human-curated dataset based on the Spider benchmark for text-to-SQL translation. NL questions in Spider-Syn are modified from Spider, by replacing their schema-related words with manually selected synonyms that reflect real-world question paraphrases. We observe that the accuracy dramatically drops by eliminating such explicit correspondence between NL questions and table schemas, even if the synonyms are not adversarially selected to conduct worst-case attacks. Finally, we present two categories of approaches to improve the model robustness. The first category of approaches utilizes additional synonym annotations for table schemas by modifying the model input, while the second category is based on adversarial training. We demonstrate that both categories of approaches significantly outperform their counterparts without the defense, and the first category of approaches are more effective.

2013

pdf
Augmented Parsing of Unknown Word by Graph-Based Semi-Supervised Learning
Qiuping Huang | Derek F. Wong | Lidia S. Chao | Xiaodong Zeng | Liangye He
Proceedings of the 27th Pacific Asia Conference on Language, Information, and Computation (PACLIC 27)

2012

pdf
A Simplified Chinese Parser with Factored Model
Qiuping Huang | Liangye He | Derek F. Wong | Lidia S. Chao
Proceedings of the Second CIPS-SIGHAN Joint Conference on Chinese Language Processing