Pinzhen Chen


2024

pdf
Monolingual or Multilingual Instruction Tuning: Which Makes a Better Alpaca
Pinzhen Chen | Shaoxiong Ji | Nikolay Bogoychev | Andrey Kutuzov | Barry Haddow | Kenneth Heafield
Findings of the Association for Computational Linguistics: EACL 2024

Foundational large language models (LLMs) can be instruction-tuned to perform open-domain question answering, facilitating applications like chat assistants. While such efforts are often carried out in a single language, we empirically analyze cost-efficient strategies for multilingual scenarios. Our study employs the Alpaca dataset and machine translations of it to form multilingual data, which is then used to tune LLMs through either low-rank adaptation or full-parameter training. Under a controlled computation budget, comparisons show that multilingual tuning is on par or better than tuning a model for each language. Furthermore, multilingual tuning with downsampled data can be as powerful and more robust. Our findings serve as a guide for expanding language support through instruction tuning.

pdf
EEE-QA: Exploring Effective and Efficient Question-Answer Representations
Zhanghao Hu | Yijun Yang | Junjie Xu | Yifu Qiu | Pinzhen Chen
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Current approaches to question answering rely on pre-trained language models (PLMs) like RoBERTa. This work challenges the existing question-answer encoding convention and explores finer representations. We begin with testing various pooling methods compared to using the begin-of-sentence token as a question representation for better quality. Next, we explore opportunities to simultaneously embed all answer candidates with the question. This enables cross-reference between answer choices and improves inference throughput via reduced memory usage. Despite their simplicity and effectiveness, these methods have yet to be widely studied in current frameworks. We experiment with different PLMs, and with and without the integration of knowledge graphs. Results prove that the memory efficacy of the proposed techniques with little sacrifice in performance. Practically, our work enhances 38-100% throughput with 26-65% speedups on consumer-grade GPUs by allowing for considerably larger batch sizes. Our work sends a message to the community with promising directions in both representation quality and efficiency for the question-answering task in natural language processing.

pdf
UniArk: Improving Generalisation and Consistency for Factual Knowledge Extraction through Debiasing
Yijun Yang | Jie He | Pinzhen Chen | Victor Gutierrez Basulto | Jeff Pan
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Several recent papers have investigated the potential of language models as knowledge bases as well as the existence of severe biases when extracting factual knowledge. In this work, we focus on the factual probing performance over unseen prompts from tuning, and using a probabilistic view we show the inherent misalignment between pre-training and downstream tuning objectives in language models for probing knowledge. We hypothesize that simultaneously debiasing these objectives can be the key to generalisation over unseen prompts. We propose an adapter-based framework, **UniArk**, for generalised and consistent factual knowledge extraction through simple methods without introducing extra parameters. Extensive experiments show that UniArk can significantly improve the model’s out-of-domain generalisation as well as consistency under various prompts. Additionally, we construct **ParaTrex**, a large-scale and diverse dataset for measuring the inconsistency and out-of-domain generation of models. Further, ParaTrex offers a reference method for constructing paraphrased datasets using large language models.

2023

pdf
Towards Effective Disambiguation for Machine Translation with Large Language Models
Vivek Iyer | Pinzhen Chen | Alexandra Birch
Proceedings of the Eighth Conference on Machine Translation

Resolving semantic ambiguity has long been recognised as a central challenge in the field of Machine Translation. Recent work on benchmarking translation performance on ambiguous sentences has exposed the limitations of conventional Neural Machine Translation (NMT) systems, which fail to handle many such cases. Large language models (LLMs) have emerged as a promising alternative, demonstrating comparable performance to traditional NMT models while introducing new paradigms for controlling the target outputs. In this paper, we study the capabilities of LLMs to translate “ambiguous sentences” - i.e. those containing highly polysemous words and/or rare word senses. We also propose two ways to improve their disambiguation capabilities, through a) in-context learning and b) fine-tuning on carefully curated ambiguous datasets. Experiments show that our methods can match or outperform state-of-the-art systems such as DeepL and NLLB in four out of five language directions. Our research provides valuable insights into effectively adapting LLMs to become better disambiguators during Machine Translation. We release our curated disambiguation corpora and resources at https://data.statmt.org/ambiguous-europarl.

pdf
Terminology-Aware Translation with Constrained Decoding and Large Language Model Prompting
Nikolay Bogoychev | Pinzhen Chen
Proceedings of the Eighth Conference on Machine Translation

Terminology correctness is important in the downstream application of machine translation, and a prevalent way to ensure this is to inject terminology constraints into a translation system. In our submission to the WMT 2023 terminology translation task, we adopt a translate-then-refine approach which can be domain-independent and requires minimal manual efforts. We annotate random source words with pseudo-terminology translations obtained from word alignment to first train a terminology-aware model. Further, we explore two post-processing methods. First, we use an alignment process to discover whether a terminology constraint has been violated, and if so, we re-decode with the violating word negatively constrained. Alternatively, we leverage a large language model to refine a hypothesis by providing it with terminology constraints. Results show that our terminology-aware model learns to incorporate terminologies effectively, and the large language model refinement process can further improve terminology recall.

pdf
Exploring Data Augmentation for Code Generation Tasks
Pinzhen Chen | Gerasimos Lampouras
Findings of the Association for Computational Linguistics: EACL 2023

Advances in natural language processing, such as transfer learning from pre-trained language models, have impacted how models are trained for programming language tasks too. Previous research primarily explored code pre-training and expanded it through multi-modality and multi-tasking, yet the data for downstream tasks remain modest in size. Focusing on data utilization for downstream tasks, we propose and adapt augmentation methods that yield consistent improvements in code translation and summarization by up to 6.9% and 7.5% respectively. Further analysis suggests that our methods work orthogonally and show benefits in output code style and numeric consistency. We also discuss test data imperfections.

pdf
PMIndiaSum: Multilingual and Cross-lingual Headline Summarization for Languages in India
Ashok Urlana | Pinzhen Chen | Zheng Zhao | Shay Cohen | Manish Shrivastava | Barry Haddow
Findings of the Association for Computational Linguistics: EMNLP 2023

This paper introduces PMIndiaSum, a multilingual and massively parallel summarization corpus focused on languages in India. Our corpus provides a training and testing ground for four language families, 14 languages, and the largest to date with 196 language pairs. We detail our construction workflow including data acquisition, processing, and quality assurance. Furthermore, we publish benchmarks for monolingual, cross-lingual, and multilingual summarization by fine-tuning, prompting, as well as translate-and-summarize. Experimental results confirm the crucial role of our data in aiding summarization between Indian languages. Our dataset is publicly available and can be freely modified and re-distributed.

2022

pdf
To Adapt or to Fine-tune: A Case Study on Abstractive Summarization
Zheng Zhao | Pinzhen Chen
Proceedings of the 21st Chinese National Conference on Computational Linguistics

“Recent advances in the field of abstractive summarization leverage pre-trained language models rather than train a model from scratch. However, such models are sluggish to train and accompanied by a massive overhead. Researchers have proposed a few lightweight alternatives such as smaller adapters to mitigate the drawbacks. Nonetheless, it remains uncertain whether using adapters benefits the task of summarization, in terms of improved efficiency without an unpleasant sacrifice in performance. In this work, we carry out multifaceted investigations on fine-tuning and adapters for summarization tasks with varying complexity: language, domain, and task transfer. In our experiments, fine-tuning a pre-trained language model generally attains a better performance than using adapters; the performance gap positively correlates with the amount of training data used. Notably, adapters exceed fine-tuning under extremely low-resource conditions. We further provide insights on multilinguality, model convergence, and robustness, hoping to shed light on the pragmatic choice of fine-tuning or adapters in abstractive summarization.”

pdf
Approaching Neural Chinese Word Segmentation as a Low-Resource Machine Translation Task
Pinzhen Chen | Kenneth Heafield
Proceedings of the 36th Pacific Asia Conference on Language, Information and Computation

pdf bib
A Unified Model for Reverse Dictionary and Definition Modelling
Pinzhen Chen | Zheng Zhao
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

We build a dual-way neural dictionary to retrieve words given definitions, and produce definitions for queried words. The model learns the two tasks simultaneously and handles unknown words via embeddings. It casts a word or a definition to the same representation space through a shared layer, then generates the other form in a multi-task fashion. Our method achieves promising automatic scores on previous benchmarks without extra resources. Human annotators prefer the model’s outputs in both reference-less and reference-based evaluation, indicating its practicality. Analysis suggests that multiple objectives benefit learning.

pdf
The University of Edinburgh’s Submission to the WMT22 Code-Mixing Shared Task (MixMT)
Faheem Kirefu | Vivek Iyer | Pinzhen Chen | Laurie Burchell
Proceedings of the Seventh Conference on Machine Translation (WMT)

The University of Edinburgh participated in the WMT22 shared task on code-mixed translation. This consists of two subtasks: i) generating code-mixed Hindi/English (Hinglish) text generation from parallel Hindi and English sentences and ii) machine translation from Hinglish to English. As both subtasks are considered low-resource, we focused our efforts on careful data generation and curation, especially the use of backtranslation from monolingual resources. For subtask 1 we explored the effects of constrained decoding on English and transliterated subwords in order to produce Hinglish. For subtask 2, we investigated different pretraining techniques, namely comparing simple initialisation from existing machine translation models and aligned augmentation. For both subtasks, we found that our baseline systems worked best. Our systems for both subtasks were one of the overall top-performing submissions.

pdf
Edinburgh at SemEval-2022 Task 1: Jointly Fishing for Word Embeddings and Definitions
Pinzhen Chen | Zheng Zhao
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

This paper presents a winning submission to the SemEval 2022 Task 1 on two sub-tasks: reverse dictionary and definition modelling. We leverage a recently proposed unified model with multi-task training. It utilizes data symmetrically and learns to tackle both tracks concurrently. Analysis shows that our system performs consistently on diverse languages, and works the best with sgns embeddings. Yet, char and electra carry intriguing properties. The two tracks’ best results are always in differing subsets grouped by linguistic annotations. In this task, the quality of definition generation lags behind, and BLEU scores might be misleading.

2021

pdf
The University of Edinburgh’s English-German and English-Hausa Submissions to the WMT21 News Translation Task
Pinzhen Chen | Jindřich Helcl | Ulrich Germann | Laurie Burchell | Nikolay Bogoychev | Antonio Valerio Miceli Barone | Jonas Waldendorf | Alexandra Birch | Kenneth Heafield
Proceedings of the Sixth Conference on Machine Translation

This paper presents the University of Edinburgh’s constrained submissions of English-German and English-Hausa systems to the WMT 2021 shared task on news translation. We build En-De systems in three stages: corpus filtering, back-translation, and fine-tuning. For En-Ha we use an iterative back-translation approach on top of pre-trained En-De models and investigate vocabulary embedding mapping.

pdf
The University of Edinburgh’s Bengali-Hindi Submissions to the WMT21 News Translation Task
Proyag Pal | Alham Fikri Aji | Pinzhen Chen | Sukanta Sen
Proceedings of the Sixth Conference on Machine Translation

We describe the University of Edinburgh’s BengaliHindi constrained systems submitted to the WMT21 News Translation task. We submitted ensembles of Transformer models built with large-scale back-translation and fine-tuned on subsets of training data retrieved based on similarity to the target domain.

pdf
Efficient Machine Translation with Model Pruning and Quantization
Maximiliana Behnke | Nikolay Bogoychev | Alham Fikri Aji | Kenneth Heafield | Graeme Nail | Qianqian Zhu | Svetlana Tchistiakova | Jelmer van der Linde | Pinzhen Chen | Sidharth Kashyap | Roman Grundkiewicz
Proceedings of the Sixth Conference on Machine Translation

We participated in all tracks of the WMT 2021 efficient machine translation task: single-core CPU, multi-core CPU, and GPU hardware with throughput and latency conditions. Our submissions combine several efficiency strategies: knowledge distillation, a simpler simple recurrent unit (SSRU) decoder with one or two layers, lexical shortlists, smaller numerical formats, and pruning. For the CPU track, we used quantized 8-bit models. For the GPU track, we experimented with FP16 and 8-bit integers in tensorcores. Some of our submissions optimize for size via 4-bit log quantization and omitting a lexical shortlist. We have extended pruning to more parts of the network, emphasizing component- and block-level pruning that actually improves speed unlike coefficient-wise pruning.

pdf
The Highs and Lows of Simple Lexical Domain Adaptation Approaches for Neural Machine Translation
Nikolay Bogoychev | Pinzhen Chen
Proceedings of the Second Workshop on Insights from Negative Results in NLP

Machine translation systems are vulnerable to domain mismatch, especially in a low-resource scenario. Out-of-domain translations are often of poor quality and prone to hallucinations, due to exposure bias and the decoder acting as a language model. We adopt two approaches to alleviate this problem: lexical shortlisting restricted by IBM statistical alignments, and hypothesis reranking based on similarity. The methods are computationally cheap and show success on low-resource out-of-domain test sets. However, the methods lose advantage when there is sufficient data or too great domain mismatch. This is due to both the IBM model losing its advantage over the implicitly learned neural alignment, and issues with subword segmentation of unseen words.

2020

pdf
Character Mapping and Ad-hoc Adaptation: Edinburgh’s IWSLT 2020 Open Domain Translation System
Pinzhen Chen | Nikolay Bogoychev | Ulrich Germann
Proceedings of the 17th International Conference on Spoken Language Translation

This paper describes the University of Edinburgh’s neural machine translation systems submitted to the IWSLT 2020 open domain JapaneseChinese translation task. On top of commonplace techniques like tokenisation and corpus cleaning, we explore character mapping and unsupervised decoding-time adaptation. Our techniques focus on leveraging the provided data, and we show the positive impact of each technique through the gradual improvement of BLEU.

pdf
Parallel Sentence Mining by Constrained Decoding
Pinzhen Chen | Nikolay Bogoychev | Kenneth Heafield | Faheem Kirefu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We present a novel method to extract parallel sentences from two monolingual corpora, using neural machine translation. Our method relies on translating sentences in one corpus, but constraining the decoding by a prefix tree built on the other corpus. We argue that a neural machine translation system by itself can be a sentence similarity scorer and it efficiently approximates pairwise comparison with a modified beam search. When benchmarked on the BUCC shared task, our method achieves results comparable to other submissions.

pdf
ParaCrawl: Web-Scale Acquisition of Parallel Corpora
Marta Bañón | Pinzhen Chen | Barry Haddow | Kenneth Heafield | Hieu Hoang | Miquel Esplà-Gomis | Mikel L. Forcada | Amir Kamran | Faheem Kirefu | Philipp Koehn | Sergio Ortiz Rojas | Leopoldo Pla Sempere | Gema Ramírez-Sánchez | Elsa Sarrías | Marek Strelec | Brian Thompson | William Waites | Dion Wiggins | Jaume Zaragoza
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We report on methods to create the largest publicly available parallel corpora by crawling the web, using open source software. We empirically compare alternative methods and publish benchmark data sets for sentence alignment and sentence pair filtering. We also describe the parallel corpora released and evaluate their quality and their usefulness to create machine translation systems.