Variational Autoencoder (VAE) is an effective framework to model the interdependency for non-autoregressive neural machine translation (NAT). One of the prominent VAE-based NAT frameworks, LaNMT, achieves great improvements to vanilla models, but still suffers from two main issues which lower down the translation quality: (1) mismatch between training and inference circumstances and (2) inadequacy of latent representations. In this work, we target on addressing these issues by proposing posterior consistency regularization. Specifically, we first perform stochastic data augmentation on the input samples to better adapt the model for inference circumstance, and then conduct consistency training on posterior latent variables to construct a more robust latent representations without any expansion on latent size. Experiments on En<->De and En<->Ro benchmarks confirm the effectiveness of our methods with about 1.5/0.7 and 0.8/0.3 BLEU points improvement to the baseline model with about 12.6× faster than autoregressive Transformer.
First-hand experience related to any changes of one’s health condition and understanding such experience can play an important role in advancing medical science and healthcare. Monitoring the safe use of medication drugs is an important task of pharmacovigilance, and first-hand experience of effects about consumers’ medication intake can be valuable to gain insight into how our human body reacts to medications. Social media have been considered as a possible alternative data source for gathering personal experience with medications posted by users. Identifying personal experience tweets is a challenging classification task, and efforts have made to tackle the challenges using supervised approaches requiring annotated data. There exists abundance of unlabeled Twitter data, and being able to use such data for training without suffering in classification performance is of great value, which can reduce the cost of laborious annotation process. We investigated two semi-supervised learning methods, with different mixes of labeled and unlabeled data in the training set, to understand the impact on classification performance. Our results from both pseudo-label and consistency regularization methods show that both methods generated a noticeable improvement in F1 score when the labeled set was small, and consistency regularization could still provide a small gain even a larger labeled set was used.
Post-market surveillance, the practice of monitoring the safe use of pharmaceutical drugs is an important part of pharmacovigilance. Being able to collect personal experience related to pharmaceutical product use could help us gain insight into how the human body reacts to different medications. Twitter, a popular social media service, is being considered as an important alternative data source for collecting personal experience information with medications. Identifying personal experience tweets is a challenging classification task in natural language processing. In this study, we utilized three methods based on Facebook’s Robustly Optimized BERT Pretraining Approach (RoBERTa) to predict personal experience tweets related to medication use: the first one combines the pre-trained RoBERTa model with a classifier, the second combines the updated pre-trained RoBERTa model using a corpus of unlabeled tweets with a classifier, and the third combines the RoBERTa model that was trained with our unlabeled tweets from scratch with the classifier too. Our results show that all of these approaches outperform the published methods (Word Embedding + LSTM) in classification performance (p < 0.05), and updating the pre-trained language model with tweets related to medications could even improve the performance further.