Pretrained Language Models (PLMs) benefit from external knowledge stored in graph structures for various downstream tasks. However, bridging the modality gap between graph structures and text remains a significant challenge. Traditional methods like linearizing graphs for PLMs lose vital graph connectivity, whereas Graph Neural Networks (GNNs) require cumbersome processes for integration into PLMs. In this work, we propose a novel graph-guided self-attention mechanism, GraSAME. GraSAME seamlessly incorporates token-level structural information into PLMs without necessitating additional alignment or concatenation efforts. As an end-to-end, lightweight multimodal module, GraSAME follows a multi-task learning strategy and effectively bridges the gap between graph and textual modalities, facilitating dynamic interactions between GNNs and PLMs. Our experiments on the graph-to-text generation task demonstrate that GraSAME outperforms baseline models and achieves results comparable to state-of-the-art (SOTA) models on WebNLG datasets. Furthermore, compared to SOTA models, GraSAME eliminates the need for extra pre-training tasks to adjust graph inputs and reduces the number of trainable parameters by over 100 million.
Prompt-based methods have been successfully applied to multilingual pretrained language models for zero-shot cross-lingual understanding. However, most previous studies primarily focused on sentence-level classification tasks, and only a few considered token-level labeling tasks such as Named Entity Recognition (NER) and Part-of-Speech (POS) tagging. In this paper, we propose Token-Level Prompt Decomposition (ToPro), which facilitates the prompt-based method for token-level sequence labeling tasks. The ToPro method decomposes an input sentence into single tokens and applies one prompt template to each token. Our experiments on multilingual NER and POS tagging datasets demonstrate that ToPro-based fine-tuning outperforms Vanilla fine-tuning and Prompt-Tuning in zero-shot cross-lingual transfer, especially for languages that are typologically different from the source language English. Our method also attains state-of-the-art performance when employed with the mT5 model. Besides, our exploratory study in multilingual large language models shows that ToPro performs much better than the current in-context learning method. Overall, the performance improvements show that ToPro could potentially serve as a novel and simple benchmarking method for sequence labeling tasks.
We present FREDo, a few-shot document-level relation extraction (FSDLRE) benchmark. As opposed to existing benchmarks which are built on sentence-level relation extraction corpora, we argue that document-level corpora provide more realism, particularly regarding none-of-the-above (NOTA) distributions. Therefore, we propose a set of FSDLRE tasks and construct a benchmark based on two existing supervised learning data sets, DocRED and sciERC. We adapt the state-of-the-art sentence-level method MNAV to the document-level and develop it further for improved domain adaptation. We find FSDLRE to be a challenging setting with interesting new characteristics such as the ability to sample NOTA instances from the support set. The data, code, and trained models are available online (https://github.com/nicpopovic/FREDo).
In this paper, we present an end-to-end joint entity and relation extraction approach based on transformer-based language models. We apply the model to the task of linking mathematical symbols to their descriptions in LaTeX documents. In contrast to existing approaches, which perform entity and relation extraction in sequence, our system incorporates information from relation extraction into entity extraction. This means that the system can be trained even on data sets where only a subset of all valid entity spans is annotated. We provide an extensive evaluation of the proposed system and its strengths and weaknesses. Our approach, which can be scaled dynamically in computational complexity at inference time, produces predictions with high precision and reaches 3rd place in the leaderboard of SemEval-2022 Task 12. For inputs in the domain of physics and math, it achieves high relation extraction macro F1 scores of 95.43% and 79.17%, respectively. The code used for training and evaluating our models is available at: https://github.com/nicpopovic/RE1st
Applications based on scholarly data are of ever increasing importance. This results in disadvantages for areas where high-quality data and compatible systems are not available, such as non-English publications. To advance the mitigation of this imbalance, we use Cyrillic script publications from the CORE collection to create a high-quality data set for metadata extraction. We utilize our data for training and evaluating sequence labeling models to extract title and author information. Retraining GROBID on our data, we observe significant improvements in terms of precision and recall and achieve even better results with a self developed model. We make our data set covering over 15,000 publications as well as our source code freely available.
The spread of biased news and its consumption by the readers has become a considerable issue. Researchers from multiple domains including social science and media studies have made efforts to mitigate this media bias issue. Specifically, various techniques ranging from natural language processing to machine learning have been used to help determine news bias automatically. However, due to the lack of publicly available datasets in this field, especially ones containing labels concerning bias on a fine-grained level (e.g., on sentence level), it is still challenging to develop methods for effectively identifying bias embedded in new articles. In this paper, we propose a novel news bias dataset which facilitates the development and evaluation of approaches for detecting subtle bias in news articles and for understanding the characteristics of biased sentences. Our dataset consists of 966 sentences from 46 English-language news articles covering 4 different events and contains labels concerning bias on the sentence level. For scalability reasons, the labels were obtained based on crowd-sourcing. Our dataset can be used for analyzing news bias, as well as for developing and evaluating methods for news bias detection. It can also serve as resource for related researches including ones focusing on fake news detection.
A major domain of research in natural language processing is named entity recognition and disambiguation (NERD). One of the main ways of attempting to achieve this goal is through use of Semantic Web technologies and its structured data formats. Due to the nature of structured data, information can be extracted more easily, therewith allowing for the creation of knowledge graphs. In order to properly evaluate a NERD system, gold standard data sets are required. A plethora of different evaluation data sets exists, mostly relying on either Wikipedia or DBpedia. Therefore, we have extended a widely-used gold standard data set, KORE 50, to not only accommodate NERD tasks for DBpedia, but also for YAGO, Wikidata and Crunchbase. As such, our data set, KORE 50ˆDYWC, allows for a broader spectrum of evaluation. Among others, the knowledge graph agnosticity of NERD systems may be evaluated which, to the best of our knowledge, was not possible until now for this number of knowledge graphs.
In this paper, we present an approach for classifying news articles as biased (i.e., hyperpartisan) or unbiased, based on a convolutional neural network. We experiment with various embedding methods (pretrained and trained on the training dataset) and variations of the convolutional neural network architecture and compare the results. When evaluating our best performing approach on the actual test data set of the SemEval 2019 Task 4, we obtained relatively low precision and accuracy values, while gaining the highest recall rate among all 42 participating teams.
In this paper, we introduce our cross-lingual linked data lexica, called xLiD-Lexica, which are constructed by exploiting the multilingual Wikipedia and linked data resources from Linked Open Data (LOD). We provide the cross-lingual groundings of linked data resources from LOD as RDF data, which can be easily integrated into the LOD data sources. In addition, we build a SPARQL endpoint over our xLiD-Lexica to allow users to easily access them using SPARQL query language. Multilingual and cross-lingual information access can be facilitated by the availability of such lexica, e.g., allowing for an easy mapping of natural language expressions in different languages to linked data resources from LOD. Many tasks in natural language processing, such as natural language generation, cross-lingual entity linking, text annotation and question answering, can benefit from our xLiD-Lexica.