The EAE task extracts a structured event record from an event text. Most existing approaches train the EAE model on each dataset independently and ignore the overlap knowledge across datasets. However, insufficient event records in a single dataset often prevent the existing model from achieving better performance. In this paper, we clearly define the overlap knowledge across datasets and split the knowledge of the EAE task into overlap knowledge across datasets and specific knowledge of the target dataset. We propose APE model to learn the two parts of knowledge in two serial learning phases without causing catastrophic forgetting. In addition, we formulate both learning phases as conditional generation tasks and design Stressing Entity Type Prompt to close the gap between the two phases. The experiments show APE achieves new state-of-the-art with a large margin in the EAE task. When only ten records are available in the target dataset, our model dramatically outperforms the baseline model with average 27.27% F1 gain.
In dialogue state tracking, dialogue history is a crucial material, and its utilization varies between different models. However, no matter how the dialogue history is used, each existing model uses its own consistent dialogue history during the entire state tracking process, regardless of which slot is updated. Apparently, it requires different dialogue history to update different slots in different turns. Therefore, using consistent dialogue contents may lead to insufficient or redundant information for different slots, which affects the overall performance. To address this problem, we devise DiCoS-DST to dynamically select the relevant dialogue contents corresponding to each slot for state updating. Specifically, it first retrieves turn-level utterances of dialogue history and evaluates their relevance to the slot from a combination of three perspectives: (1) its explicit connection to the slot name; (2) its relevance to the current turn dialogue; (3) Implicit Mention Oriented Reasoning. Then these perspectives are combined to yield a decision, and only the selected dialogue contents are fed into State Generator, which explicitly minimizes the distracting information passed to the downstream state prediction. Experimental results show that our approach achieves new state-of-the-art performance on MultiWOZ 2.1 and MultiWOZ 2.2, and achieves superior performance on multiple mainstream benchmark datasets (including Sim-M, Sim-R, and DSTC2).
The goal of dialogue state tracking (DST) is to predict the current dialogue state given all previous dialogue contexts. Existing approaches generally predict the dialogue state at every turn from scratch. However, the overwhelming majority of the slots in each turn should simply inherit the slot values from the previous turn. Therefore, the mechanism of treating slots equally in each turn not only is inefficient but also may lead to additional errors because of the redundant slot value generation. To address this problem, we devise the two-stage DSS-DST which consists of the Dual Slot Selector based on the current turn dialogue, and the Slot Value Generator based on the dialogue history. The Dual Slot Selector determines each slot whether to update slot value or to inherit the slot value from the previous turn from two aspects: (1) if there is a strong relationship between it and the current turn dialogue utterances; (2) if a slot value with high reliability can be obtained for it through the current turn dialogue. The slots selected to be updated are permitted to enter the Slot Value Generator to update values by a hybrid method, while the other slots directly inherit the values from the previous turn. Empirical results show that our method achieves 56.93%, 60.73%, and 58.04% joint accuracy on MultiWOZ 2.0, MultiWOZ 2.1, and MultiWOZ 2.2 datasets respectively and achieves a new state-of-the-art performance with significant improvements.