Large Language Models (LLMs) have shown promising in-context learning abilities. However, conventional In-Context Learning (ICL) approaches are often impeded by length limitations of transformer architecture, which pose challenges when attempting to effectively integrate supervision from a substantial number of demonstration examples. In this paper, we introduce a novel framework, called Naive Bayes-based Context Extension (NBCE), to enable existing LLMs to perform ICL with an increased number of demonstrations by significantly expanding their context size. Importantly, this expansion does not require fine-tuning or dependence on particular model architectures, all the while preserving linear efficiency. NBCE initially splits the context into equal-sized windows fitting the target LLM’s maximum length. Then, it introduces a voting mechanism to select the most relevant window, regarded as the posterior context. Finally, it employs Bayes’ theorem to generate the test task. Our experimental results demonstrate that NBCE substantially enhances performance, particularly as the number of demonstration examples increases, consistently outperforming alternative methods. The NBCE code will be made publicly accessible. The code NBCE is available at: https://github.com/amurtadha/NBCE-master
Semi-supervised text classification-based paradigms (SSTC) typically employ the spirit of self-training. The key idea is to train a deep classifier on limited labeled texts and then iteratively predict the unlabeled texts as their pseudo-labels for further training. However, the performance is largely affected by the accuracy of pseudo-labels, which may not be significant in real-world scenarios. This paper presents a Rank-aware Negative Training (RNT) framework to address SSTC in learning with noisy label settings. To alleviate the noisy information, we adapt a reasoning with uncertainty-based approach to rank the unlabeled texts based on the evidential support received from the labeled texts. Moreover, we propose the use of negative training to train RNT based on the concept that “the input instance does not belong to the complementary label”. A complementary label is randomly selected from all labels except the label on-target. Intuitively, the probability of a true label serving as a complementary label is low and thus provides less noisy information during the training, resulting in better performance on the test data. Finally, we evaluate the proposed solution on various text classification benchmark datasets. Our extensive experiments show that it consistently overcomes the state-of-the-art alternatives in most scenarios and achieves competitive performance in the others. The code of RNT is publicly available on GitHub.
Copy mechanisms explicitly obtain unchanged tokens from the source (input) sequence to generate the target (output) sequence under the neural seq2seq framework. However, most of the existing copy mechanisms only consider single word copying from the source sentences, which results in losing essential tokens while copying long spans. In this work, we propose a plug-and-play architecture, namely BioCopy, to alleviate the problem aforementioned. Specifically, in the training stage, we construct a BIO tag for each token and train the original model with BIO tags jointly. In the inference stage, the model will firstly predict the BIO tag at each time step, then conduct different mask strategies based on the predicted BIO label to diminish the scope of the probability distributions over the vocabulary list. Experimental results on two separate generative tasks show that they all outperform the baseline models by adding our BioCopy to the original model structure.
Extracting relational triples from unstructured text is crucial for large-scale knowledge graph construction. However, few existing works excel in solving the overlapping triple problem where multiple relational triples in the same sentence share the same entities. In this work, we introduce a fresh perspective to revisit the relational triple extraction task and propose a novel cascade binary tagging framework (CasRel) derived from a principled problem formulation. Instead of treating relations as discrete labels as in previous works, our new framework models relations as functions that map subjects to objects in a sentence, which naturally handles the overlapping problem. Experiments show that the CasRel framework already outperforms state-of-the-art methods even when its encoder module uses a randomly initialized BERT encoder, showing the power of the new tagging framework. It enjoys further performance boost when employing a pre-trained BERT encoder, outperforming the strongest baseline by 17.5 and 30.2 absolute gain in F1-score on two public datasets NYT and WebNLG, respectively. In-depth analysis on different scenarios of overlapping triples shows that the method delivers consistent performance gain across all these scenarios. The source code and data are released online.