Ji-Hui Lm
2022
PERSONACHATGEN: Generating Personalized Dialogues using GPT-3
Young-Jun Lee
|
Chae-Gyun Lim
|
Yunsu Choi
|
Ji-Hui Lm
|
Ho-Jin Choi
Proceedings of the 1st Workshop on Customized Chat Grounding Persona and Knowledge
Recently, many prior works have made their own agents generate more personalized and engaging responses using personachat. However, since this dataset is frozen in 2018, the dialogue agents trained on this dataset would not know how to interact with a human who loves “Wandavision.” One way to alleviate this problem is to create a large-scale dataset. In this work, we introduce the pipeline of creating personachatgen, which is comprised of three main components: Creating (1) profilegen, (2) Persona Set, and (3) personachatgen. To encourage GPT-3’s generation ability, we also defined a taxonomy of hierarchical persona category derived from social profiling taxonomy. To create the speaker consistent persona set, we propose a simple contradiction-based iterative sentence replacement algorithm, named CoNL. Moreover, to prevent GPT-3 generating harmful content, we presented two filtering pipelines, one each for profilegen and personachatgen. Through analyzing of personachatgen, we showed that GPT-3 can generate personalized dialogue containing diverse persona. Furthermore, we revealed a state-of-the-art Blender 90M trained on our dataset that leads to higher performance.
Search