Ida Marie S. Lassen


2024

pdf
A Matter of Perspective: Building a Multi-Perspective Annotated Dataset for the Study of Literary Quality
Yuri Bizzoni | Pascale Feldkamp Moreira | Ida Marie S. Lassen | Mads Rosendahl Thomsen | Kristoffer Nielbo
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Studies on literary quality have constantly stimulated the interest of critics, both in theoretical and empirical fields. To examine the perceived quality of literary works, some approaches have focused on data annotated through crowd-sourcing platforms, and others relied on available expert annotated data. In this work, we contribute to the debate by presenting a dataset collecting quality judgments on 9,000 19th and 20th century English-language literary novels by 3,150 predominantly Anglophone authors. We incorporate expert opinions and crowd-sourced annotations to allow comparative analyses between different literary quality evaluations. We also provide several textual metrics chosen for their potential connection with literary reception and engagement. While a large part of the texts is subjected to copyright, we release quality and reception measures together with stylometric and sentiment data for each of the 9,000 novels to promote future research and comparison.

2023

pdf
Readability and Complexity: Diachronic Evolution of Literary Language Across 9000 Novels
Pascale Feldkamp | Yuri Bizzoni | Ida Marie S. Lassen | Mads Rosendahl Thomsen | Kristoffer Nielbo
Proceedings of the Joint 3rd International Conference on Natural Language Processing for Digital Humanities and 8th International Workshop on Computational Linguistics for Uralic Languages

Using a large corpus of English language novels from 1880 to 2000, we compare several textual features associated with literary quality, seeking to examine developments in literary language and narrative complexity through time. We show that while we find a correlation between the features, readability metrics are the only ones that exhibit a steady evolution, indicating that novels become easier to read through the 20th century but not simpler. We discuss the possibility of cultural selection as a factor and compare our findings with a subset of canonical works.

pdf
Detecting intersectionality in NER models: A data-driven approach
Ida Marie S. Lassen | Mina Almasi | Kenneth Enevoldsen | Ross Deans Kristensen-McLachlan
Proceedings of the 7th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature

The presence of bias is a pressing concern for both engineers and users of language technology. What is less clear is how exactly bias can be measured, so as to rank models relative to the biases they display. Using an innovative experimental method involving data augmentation, we measure the effect of intersectional biases in Danish models used for Name Entity Recognition (NER). We quantify differences in representational biases, understood as a systematic difference in error or what is called error disparity. Our analysis includes both gender and ethnicity to illustrate the effect of multiple dimensions of bias, as well as experiments which look to move beyond a narrowly binary analysis of gender. We show that all contemporary Danish NER models perform systematically worse on non-binary and minority ethnic names, while not showing significant differences for typically Danish names. Our data augmentation technique can be applied on other languages to test for biases which might be relevant for researchers applying NER models to the study of cultural heritage data.