We introduce a frustratingly simple, highly efficient, and surprisingly effective decoding method, termed Frustratingly Simple Decoding (FSD), for neural text generation. The idea behind FSD is straightforward: We construct an anti-language model (anti-LM) based on previously generated text, which is employed to penalize the future generation of repetitive content. The anti-LM can be implemented as simple as an n-gram language model or a vectorized variant. In this way, FSD incurs no additional model parameters and negligible computational overhead (FSD can be as fast as greedy search). Despite its simplicity, FSD is surprisingly effective and generalizes across different datasets, models, and languages. Extensive experiments show that FSD outperforms established strong baselines in terms of generation quality, decoding speed, and universality.
Document translation poses a challenge for Neural Machine Translation (NMT) systems. Most document-level NMT systems rely on meticulously curated sentence-level parallel data, assuming flawless extraction of text from documents along with their precise reading order. These systems also tend to disregard additional visual cues such as the document layout, deeming it irrelevant. However, real-world documents often possess intricate text layouts that defy these assumptions. Extracting information from Optical Character Recognition (OCR) or heuristic rules can result in errors, and the layout (e.g., paragraphs, headers) may convey relationships between distant sections of text. This complexity is particularly evident in widely used PDF documents, which represent information visually. This paper addresses this gap by introducing M3T a novel benchmark dataset tailored to evaluate NMT systems on the comprehensive task of translating semi-structured documents. This dataset aims to bridge the evaluation gap in document-level NMT systems, acknowledging the challenges posed by rich text layouts in real-world applications.
We present PandaGPT, an approach to emPower large lANguage moDels with visual and Auditory instruction-following capabilities. Our pilot experiments show that PandaGPT can perform complex tasks such as detailed image description generation, writing stories inspired by videos, and answering questions about audios. More interestingly, PandaGPT can take multimodal inputs simultaneously and compose their semantics naturally. For example, PandaGPT can connect how objects look in an image/video and how they sound in an audio. To do so, PandaGPT combines the multimodal encoders from ImageBind and the large language models from Vicuna. Notably, only aligned image-text pairs are required for the training of PandaGPT. Thanks to the strong capability of ImageBind in embedding data from different modalities into the same space, PandaGPT displays emergent, i.e. zero-shot, cross-modal behaviors for data other than image and text (e.g., video, audio, depth, thermal, and IMU). We hope that PandaGPT serves as an initial step toward building AGI that can perceive and understand inputs in different modalities holistically, as we humans do.
Current practices in metric evaluation focus on one single dataset, e.g., Newstest dataset in each year’s WMT Metrics Shared Task. However, in this paper, we qualitatively and quantitatively show that the performances of metrics are sensitive to data. The ranking of metrics varies when the evaluation is conducted on different datasets. Then this paper further investigates two potential hypotheses, i.e., insignificant data points and the deviation of i.i.d assumption, which may take responsibility for the issue of data variance. In conclusion, our findings suggest that when evaluating automatic translation metrics, researchers should take data variance into account and be cautious to report the results on unreliable datasets, because it may leads to inconsistent results with most of the other datasets.
Probing is popular to analyze whether linguistic information can be captured by a well-trained deep neural model, but it is hard to answer how the change of the encoded linguistic information will affect task performance. To this end, we study the dynamic relationship between the encoded linguistic information and task performance from the viewpoint of Pareto Optimality. Its key idea is to obtain a set of models which are Pareto-optimal in terms of both objectives. From this viewpoint, we propose a method to optimize the Pareto-optimal models by formalizing it as a multi-objective optimization problem. We conduct experiments on two popular NLP tasks, i.e., machine translation and language modeling, and investigate the relationship between several kinds of linguistic information and task performances. Experimental results demonstrate that the proposed method is better than a baseline method. Our empirical findings suggest that some syntactic information is helpful for NLP tasks whereas encoding more syntactic information does not necessarily lead to better performance, because the model architecture is also an important factor.
N-gram language models (LM) has been largely superseded by neural LMs as the latter exhibits better performance. However, we find that n-gram models can achieve satisfactory performance on a large proportion of testing cases, indicating they have already captured abundant knowledge of the language with relatively low computational cost. With this observation, we propose to learn a neural LM that fits the residual between an n-gram LM and the real-data distribution. The combination of n-gram LMs and neural LMs not only allows the neural part to focus on deeper understanding of the language, but also provides a flexible way to customize a LM by switching the underlying n-gram model without changing the neural model. Experimental results on three typical language tasks (i.e., language modeling, machine translation, and summarization) demonstrate that our approach attains additional performance gains over popular standalone neural models consistently. We also show that our approach allows for effective domain adaptation by simply switching to a domain-specific n-gram model, without any extra training.
Data augmentation is an effective way to improve the performance of many neural text generation models. However, current data augmentation methods need to define or choose proper data mapping functions that map the original samples into the augmented samples. In this work, we derive an objective to formulate the problem of data augmentation on text generation tasks without any use of augmented data constructed by specific mapping functions. Our proposed objective can be efficiently optimized and applied to popular loss functions on text generation tasks with a convergence rate guarantee. Experiments on five datasets of two text generation tasks show that our approach can approximate or even surpass popular data augmentation methods.
Computer-aided translation (CAT), the use of software to assist a human translator in the translation process, has been proven to be useful in enhancing the productivity of human translators. Autocompletion, which suggests translation results according to the text pieces provided by human translators, is a core function of CAT. There are two limitations in previous research in this line. First, most research works on this topic focus on sentence-level autocompletion (i.e., generating the whole translation as a sentence based on human input), but word-level autocompletion is under-explored so far. Second, almost no public benchmarks are available for the autocompletion task of CAT. This might be among the reasons why research progress in CAT is much slower compared to automatic MT. In this paper, we propose the task of general word-level autocompletion (GWLAN) from a real-world CAT scenario, and construct the first public benchmark to facilitate research in this topic. In addition, we propose an effective method for GWLAN and compare it with several strong baselines. Experiments demonstrate that our proposed method can give significantly more accurate predictions than the baseline methods on our benchmark datasets.
Prior work has proved that Translation Memory (TM) can boost the performance of Neural Machine Translation (NMT). In contrast to existing work that uses bilingual corpus as TM and employs source-side similarity search for memory retrieval, we propose a new framework that uses monolingual memory and performs learnable memory retrieval in a cross-lingual manner. Our framework has unique advantages. First, the cross-lingual memory retriever allows abundant monolingual data to be TM. Second, the memory retriever and NMT model can be jointly optimized for the ultimate translation goal. Experiments show that the proposed method obtains substantial improvements. Remarkably, it even outperforms strong TM-augmented NMT baselines using bilingual TM. Owning to the ability to leverage monolingual data, our model also demonstrates effectiveness in low-resource and domain adaptation scenarios.
Many efforts have been devoted to extracting constituency trees from pre-trained language models, often proceeding in two stages: feature definition and parsing. However, this kind of methods may suffer from the branching bias issue, which will inflate the performances on languages with the same branch it biases to. In this work, we propose quantitatively measuring the branching bias by comparing the performance gap on a language and its reversed language, which is agnostic to both language models and extracting methods. Furthermore, we analyze the impacts of three factors on the branching bias, namely feature definitions, parsing algorithms, and language models. Experiments show that several existing works exhibit branching biases, and some implementations of these three factors can introduce the branching bias.
Recently many efforts have been devoted to interpreting the black-box NMT models, but little progress has been made on metrics to evaluate explanation methods. Word Alignment Error Rate can be used as such a metric that matches human understanding, however, it can not measure explanation methods on those target words that are not aligned to any source word. This paper thereby makes an initial attempt to evaluate explanation methods from an alternative viewpoint. To this end, it proposes a principled metric based on fidelity in regard to the predictive behavior of the NMT model. As the exact computation for this metric is intractable, we employ an efficient approach as its approximation. On six standard translation tasks, we quantitatively evaluate several explanation methods in terms of the proposed metric and we reveal some valuable findings for these explanation methods in our experiments.