Given the limited size of existing idiom corpora, we aim to enable progress in automatic idiom processing and linguistic analysis by creating the largest-to-date corpus of idioms for English. Using a fixed idiom list, automatic pre-extraction, and a strictly controlled crowdsourced annotation procedure, we show that it is feasible to build a high-quality corpus comprising more than 50K instances, an order of a magnitude larger than previous resources. Crucial ingredients of crowdsourcing were the selection of crowdworkers, clear and comprehensive instructions, and an interface that breaks down the task in small, manageable steps. Analysis of the resulting corpus revealed strong effects of genre on idiom distribution, providing new evidence for existing theories on what influences idiom usage. The corpus also contains rich metadata, and is made publicly available.
The paper presents the IWCS 2019 shared task on semantic parsing where the goal is to produce Discourse Representation Structures (DRSs) for English sentences. DRSs originate from Discourse Representation Theory and represent scoped meaning representations that capture the semantics of negation, modals, quantification, and presupposition triggers. Additionally, concepts and event-participants in DRSs are described with WordNet synsets and the thematic roles from VerbNet. To measure similarity between two DRSs, they are represented in a clausal form, i.e. as a set of tuples. Participant systems were expected to produce DRSs in this clausal form. Taking into account the rich lexical information, explicit scope marking, a high number of shared variables among clauses, and highly-constrained format of valid DRSs, all these makes the DRS parsing a challenging NLP task. The results of the shared task displayed improvements over the existing state-of-the-art parser.
Disambiguation of potentially idiomatic expressions involves determining the sense of a potentially idiomatic expression in a given context, e.g. determining that make hay in ‘Investment banks made hay while takeovers shone.’ is used in a figurative sense. This enables automatic interpretation of idiomatic expressions, which is important for applications like machine translation and sentiment analysis. In this work, we present an unsupervised approach for English that makes use of literalisations of idiom senses to improve disambiguation, which is based on the lexical cohesion graph-based method by Sporleder and Li (2009). Experimental results show that, while literalisation carries novel information, its performance falls short of that of state-of-the-art unsupervised methods.
We present a system for emoji prediction on English and Spanish tweets, prepared for the SemEval-2018 task on Multilingual Emoji Prediction. We compared the performance of an SVM, LSTM and an ensemble of these two. We found the SVM performed best on our development set with an accuracy of 61.3% for English and 83% for Spanish. The features used for the SVM are lowercased word n-grams in the range of 1 to 20, tokenised by a TweetTokenizer and stripped of stop words. On the test set, our model achieved an accuracy of 34% on English, with a slightly lower score of 29.7% accuracy on Spanish.
The Parallel Meaning Bank is a corpus of translations annotated with shared, formal meaning representations comprising over 11 million words divided over four languages (English, German, Italian, and Dutch). Our approach is based on cross-lingual projection: automatically produced (and manually corrected) semantic annotations for English sentences are mapped onto their word-aligned translations, assuming that the translations are meaning-preserving. The semantic annotation consists of five main steps: (i) segmentation of the text in sentences and lexical items; (ii) syntactic parsing with Combinatory Categorial Grammar; (iii) universal semantic tagging; (iv) symbolization; and (v) compositional semantic analysis based on Discourse Representation Theory. These steps are performed using statistical models trained in a semi-supervised manner. The employed annotation models are all language-neutral. Our first results are promising.