Frank D. Zamora-Reina
2022
LSCDiscovery: A shared task on semantic change discovery and detection in Spanish
Frank D. Zamora-Reina
|
Felipe Bravo-Marquez
|
Dominik Schlechtweg
Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change
We present the first shared task on semantic change discovery and detection in Spanish. We create the first dataset of Spanish words manually annotated by semantic change using the DURel framewok (Schlechtweg et al., 2018). The task is divided in two phases: 1) graded change discovery, and 2) binary change detection. In addition to introducing a new language for this task, the main novelty with respect to the previous tasks consists in predicting and evaluating changes for all vocabulary words in the corpus. Six teams participated in phase 1 and seven teams in phase 2 of the shared task, and the best system obtained a Spearman rank correlation of 0.735 for phase 1 and an F1 score of 0.735 for phase 2. We describe the systems developed by the competing teams, highlighting the techniques that were particularly useful.
2020
DCC-Uchile at SemEval-2020 Task 1: Temporal Referencing Word Embeddings
Frank D. Zamora-Reina
|
Felipe Bravo-Marquez
Proceedings of the Fourteenth Workshop on Semantic Evaluation
We present a system for the task of unsupervised lexical change detection: given a target word and two corpora spanning different periods of time, automatically detects whether the word has lost or gained senses from one corpus to another. Our system employs the temporal referencing method to obtain compatible representations of target words in different periods of time. This is done by concatenating corpora of different periods and performing a temporal referencing of target words i.e., treating occurrences of target words in different periods as two independent tokens. Afterwards, we train word embeddings on the joint corpus and compare the referenced vectors of each target word using cosine similarity. Our submission was ranked 7th among 34 teams for subtask 1, obtaining an average accuracy of 0.637, only 0.050 points behind the first ranked system.
Search