Edwin Simpson


2024

pdf
Efficiently Acquiring Human Feedback with Bayesian Deep Learning
Haishuo Fang | Jeet Gor | Edwin Simpson
Proceedings of the 1st Workshop on Uncertainty-Aware NLP (UncertaiNLP 2024)

Learning from human feedback can improve models for text generation or passage ranking, aligning them better to a user’s needs. Data is often collected by asking users to compare alternative outputs to a given input, which may require a large number of comparisons to learn a ranking function. The amount of comparisons needed can be reduced using Bayesian Optimisation (BO) to query the user about only the most promising candidate outputs. Previous applications of BO to text ranking relied on shallow surrogate models to learn ranking functions over candidate outputs,and were therefore unable to fine-tune rankers based on deep, pretrained language models. This paper leverages Bayesian deep learning (BDL) to adapt pretrained language models to highly specialised text ranking tasks, using BO to tune the model with a small number of pairwise preferences between candidate outputs. We apply our approach to community question answering (cQA) and extractive multi-document summarisation (MDS) with simulated noisy users, finding that our BDL approach significantly outperforms both a shallow Gaussian process model and traditional active learning with a standard deep neural network, while remaining robust to noise in the user feedback.

2023

pdf
Efficient Methods for Natural Language Processing: A Survey
Marcos Treviso | Ji-Ung Lee | Tianchu Ji | Betty van Aken | Qingqing Cao | Manuel R. Ciosici | Michael Hassid | Kenneth Heafield | Sara Hooker | Colin Raffel | Pedro H. Martins | André F. T. Martins | Jessica Zosa Forde | Peter Milder | Edwin Simpson | Noam Slonim | Jesse Dodge | Emma Strubell | Niranjan Balasubramanian | Leon Derczynski | Iryna Gurevych | Roy Schwartz
Transactions of the Association for Computational Linguistics, Volume 11

Recent work in natural language processing (NLP) has yielded appealing results from scaling model parameters and training data; however, using only scale to improve performance means that resource consumption also grows. Such resources include data, time, storage, or energy, all of which are naturally limited and unevenly distributed. This motivates research into efficient methods that require fewer resources to achieve similar results. This survey synthesizes and relates current methods and findings in efficient NLP. We aim to provide both guidance for conducting NLP under limited resources, and point towards promising research directions for developing more efficient methods.

2021

pdf
Improving Factual Consistency Between a Response and Persona Facts
Mohsen Mesgar | Edwin Simpson | Iryna Gurevych
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Neural models for response generation produce responses that are semantically plausible but not necessarily factually consistent with facts describing the speaker’s persona. These models are trained with fully supervised learning where the objective function barely captures factual consistency. We propose to fine-tune these models by reinforcement learning and an efficient reward function that explicitly captures the consistency between a response and persona facts as well as semantic plausibility. Our automatic and human evaluations on the PersonaChat corpus confirm that our approach increases the rate of responses that are factually consistent with persona facts over its supervised counterpart while retains the language quality of responses.

pdf bib
Aggregating and Learning from Multiple Annotators
Silviu Paun | Edwin Simpson
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Tutorial Abstracts

The success of NLP research is founded on high-quality annotated datasets, which are usually obtained from multiple expert annotators or crowd workers. The standard practice to training machine learning models is to first adjudicate the disagreements and then perform the training. To this end, there has been a lot of work on aggregating annotations, particularly for classification tasks. However, many other tasks, particularly in NLP, have unique characteristics not considered by standard models of annotation, e.g., label interdependencies in sequence labelling tasks, unrestricted labels for anaphoric annotation, or preference labels for ranking texts. In recent years, researchers have picked up on this and are covering the gap. A first objective of this tutorial is to connect NLP researchers with state-of-the-art aggregation models for a diverse set of canonical language annotation tasks. There is also a growing body of recent work arguing that following the convention and training with adjudicated labels ignores any uncertainty the labellers had in their classifications, which results in models with poorer generalisation capabilities. Therefore, a second objective of this tutorial is to teach NLP workers how they can augment their (deep) neural models to learn from data with multiple interpretations.

pdf bib
Proceedings of the First Workshop on Interactive Learning for Natural Language Processing
Kianté Brantley | Soham Dan | Iryna Gurevych | Ji-Ung Lee | Filip Radlinski | Hinrich Schütze | Edwin Simpson | Lili Yu
Proceedings of the First Workshop on Interactive Learning for Natural Language Processing

pdf
A Proposal: Interactively Learning to Summarise Timelines by Reinforcement Learning
Yuxuan Ye | Edwin Simpson
Proceedings of the First Workshop on Interactive Learning for Natural Language Processing

Timeline Summarisation (TLS) aims to generate a concise, time-ordered list of events described in sources such as news articles. However, current systems do not provide an adequate way to adapt to new domains nor to focus on the aspects of interest to a particular user. Therefore, we propose a method for interactively learning abstractive TLS using Reinforcement Learning (RL). We define a compound reward function and use RL to fine-tune an abstractive Multi-document Summarisation (MDS) model, which avoids the need to train using reference summaries. One of the sub-reward functions will be learned interactively from user feedback to ensure the consistency between users’ demands and the generated timeline. The other sub-reward functions contribute to topical coherence and linguistic fluency. We plan experiments to evaluate whether our approach could generate accurate and precise timelines tailored for each user.

pdf
SemEval-2021 Task 12: Learning with Disagreements
Alexandra Uma | Tommaso Fornaciari | Anca Dumitrache | Tristan Miller | Jon Chamberlain | Barbara Plank | Edwin Simpson | Massimo Poesio
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

Disagreement between coders is ubiquitous in virtually all datasets annotated with human judgements in both natural language processing and computer vision. However, most supervised machine learning methods assume that a single preferred interpretation exists for each item, which is at best an idealization. The aim of the SemEval-2021 shared task on learning with disagreements (Le-Wi-Di) was to provide a unified testing framework for methods for learning from data containing multiple and possibly contradictory annotations covering the best-known datasets containing information about disagreements for interpreting language and classifying images. In this paper we describe the shared task and its results.

2020

pdf
Interactive Text Ranking with Bayesian Optimization: A Case Study on Community QA and Summarization
Edwin Simpson | Yang Gao | Iryna Gurevych
Transactions of the Association for Computational Linguistics, Volume 8

For many NLP applications, such as question answering and summarization, the goal is to select the best solution from a large space of candidates to meet a particular user’s needs. To address the lack of user or task-specific training data, we propose an interactive text ranking approach that actively selects pairs of candidates, from which the user selects the best. Unlike previous strategies, which attempt to learn a ranking across the whole candidate space, our method uses Bayesian optimization to focus the user’s labeling effort on high quality candidates and integrate prior knowledge to cope better with small data scenarios. We apply our method to community question answering (cQA) and extractive multidocument summarization, finding that it significantly outperforms existing interactive approaches. We also show that the ranking function learned by our method is an effective reward function for reinforcement learning, which improves the state of the art for interactive summarization.

2019

pdf
A Bayesian Approach for Sequence Tagging with Crowds
Edwin Simpson | Iryna Gurevych
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Current methods for sequence tagging, a core task in NLP, are data hungry, which motivates the use of crowdsourcing as a cheap way to obtain labelled data. However, annotators are often unreliable and current aggregation methods cannot capture common types of span annotation error. To address this, we propose a Bayesian method for aggregating sequence tags that reduces errors by modelling sequential dependencies between the annotations as well as the ground-truth labels. By taking a Bayesian approach, we account for uncertainty in the model due to both annotator errors and the lack of data for modelling annotators who complete few tasks. We evaluate our model on crowdsourced data for named entity recognition, information extraction and argument mining, showing that our sequential model outperforms the previous state of the art, and that Bayesian approaches outperform non-Bayesian alternatives. We also find that our approach can reduce crowdsourcing costs through more effective active learning, as it better captures uncertainty in the sequence labels when there are few annotations.

pdf
Text Processing Like Humans Do: Visually Attacking and Shielding NLP Systems
Steffen Eger | Gözde Gül Şahin | Andreas Rücklé | Ji-Ung Lee | Claudia Schulz | Mohsen Mesgar | Krishnkant Swarnkar | Edwin Simpson | Iryna Gurevych
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Visual modifications to text are often used to obfuscate offensive comments in social media (e.g., “!d10t”) or as a writing style (“1337” in “leet speak”), among other scenarios. We consider this as a new type of adversarial attack in NLP, a setting to which humans are very robust, as our experiments with both simple and more difficult visual perturbations demonstrate. We investigate the impact of visual adversarial attacks on current NLP systems on character-, word-, and sentence-level tasks, showing that both neural and non-neural models are, in contrast to humans, extremely sensitive to such attacks, suffering performance decreases of up to 82%. We then explore three shielding methods—visual character embeddings, adversarial training, and rule-based recovery—which substantially improve the robustness of the models. However, the shielding methods still fall behind performances achieved in non-attack scenarios, which demonstrates the difficulty of dealing with visual attacks.

pdf
Predicting Humorousness and Metaphor Novelty with Gaussian Process Preference Learning
Edwin Simpson | Erik-Lân Do Dinh | Tristan Miller | Iryna Gurevych
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

The inability to quantify key aspects of creative language is a frequent obstacle to natural language understanding. To address this, we introduce novel tasks for evaluating the creativeness of language—namely, scoring and ranking text by humorousness and metaphor novelty. To sidestep the difficulty of assigning discrete labels or numeric scores, we learn from pairwise comparisons between texts. We introduce a Bayesian approach for predicting humorousness and metaphor novelty using Gaussian process preference learning (GPPL), which achieves a Spearman’s ρ of 0.56 against gold using word embeddings and linguistic features. Our experiments show that given sparse, crowdsourced annotation data, ranking using GPPL outperforms best–worst scaling. We release a new dataset for evaluating humour containing 28,210 pairwise comparisons of 4,030 texts, and make our software freely available.

2018

pdf
Finding Convincing Arguments Using Scalable Bayesian Preference Learning
Edwin Simpson | Iryna Gurevych
Transactions of the Association for Computational Linguistics, Volume 6

We introduce a scalable Bayesian preference learning method for identifying convincing arguments in the absence of gold-standard ratings or rankings. In contrast to previous work, we avoid the need for separate methods to perform quality control on training data, predict rankings and perform pairwise classification. Bayesian approaches are an effective solution when faced with sparse or noisy training data, but have not previously been used to identify convincing arguments. One issue is scalability, which we address by developing a stochastic variational inference method for Gaussian process (GP) preference learning. We show how our method can be applied to predict argument convincingness from crowdsourced data, outperforming the previous state-of-the-art, particularly when trained with small amounts of unreliable data. We demonstrate how the Bayesian approach enables more effective active learning, thereby reducing the amount of data required to identify convincing arguments for new users and domains. While word embeddings are principally used with neural networks, our results show that word embeddings in combination with linguistic features also benefit GPs when predicting argument convincingness.