Zero-shot event extraction (EE) methods infer richly structured event records from text, based only on a minimal user specification and no training examples, which enables flexibility in exploring and developing applications. Most event extraction research uses the Automatic Content Extraction (ACE) annotated dataset to evaluate supervised EE methods, but can it be used to evaluate zero-shot and other low-supervision EE? We describe ACE’s event structures and identify significant ambiguities and issues in current evaluation practice, including (1) coreferent argument mentions, (2) conflicting argument head conventions, and (3) ignorance of modality and event class details. By sometimes mishandling these subtleties, current work may dramatically understate the actual performance of zero-shot and other low-supervision EE, considering up to 32% of correctly identified arguments and 25% of correctly ignored event mentions as false negatives. For each issue, we propose recommendations for future evaluations so the research community can better utilize ACE as an event evaluation resource.
Large-scale, high-quality corpora are critical for advancing research in coreference resolution. However, existing datasets vary in their definition of coreferences and have been collected via complex and lengthy guidelines that are curated for linguistic experts. These concerns have sparked a growing interest among researchers to curate a unified set of guidelines suitable for annotators with various backgrounds. In this work, we develop a crowdsourcing-friendly coreference annotation methodology, ezCoref, consisting of an annotation tool and an interactive tutorial. We use ezCoref to re-annotate 240 passages from seven existing English coreference datasets (spanning fiction, news, and multiple other domains) while teaching annotators only cases that are treated similarly across these datasets. Surprisingly, we find that reasonable quality annotations were already achievable (90% agreement between the crowd and expert annotations) even without extensive training. On carefully analyzing the remaining disagreements, we identify the presence of linguistic cases that our annotators unanimously agree upon but lack unified treatments (e.g., generic pronouns, appositives) in existing datasets. We propose the research community should revisit these phenomena when curating future unified annotation guidelines.
In this paper, we utilize recent advancements in social media natural language processing to obtain state-of-the-art syntactic dependency parsing results for social media English. We observe performance gains of 3.4 UAS and 4.0 LAS against the previous state-of-the-art as well as less disparity between African-American and Mainstream American English dialects. We demonstrate the computational social scientific utility of this parser for the task of socially embedded entity attribute analysis: for a specified entity, derive its semantic relationships from parses’ rich syntax, and accumulate and compare them across social variables. We conduct a case study on politicized views of U.S. official Anthony Fauci during the COVID-19 pandemic.
The study of language variation examines how language varies between and within different groups of speakers, shedding light on how we use language to construct identities and how social contexts affect language use. A common method is to identify instances of a certain linguistic feature - say, the zero copula construction - in a corpus, and analyze the feature’s distribution across speakers, topics, and other variables, to either gain a qualitative understanding of the feature’s function or systematically measure variation. In this paper, we explore the challenging task of automatic morphosyntactic feature detection in low-resource English varieties. We present a human-in-the-loop approach to generate and filter effective contrast sets via corpus-guided edits. We show that our approach improves feature detection for both Indian English and African American English, demonstrate how it can assist linguistic research, and release our fine-tuned models for use by other researchers.
Participants in political discourse employ rhetorical strategies—such as hedging, attributions, or denials—to display varying degrees of belief commitments to claims proposed by themselves or others. Traditionally, political scientists have studied these epistemic phenomena through labor-intensive manual content analysis. We propose to help automate such work through epistemic stance prediction, drawn from research in computational semantics, to distinguish at the clausal level what is asserted, denied, or only ambivalently suggested by the author or other mentioned entities (belief holders). We first develop a simple RoBERTa-based model for multi-source stance predictions that outperforms more complex state-of-the-art modeling. Then we demonstrate its novel application to political science by conducting a large-scale analysis of the Mass Market Manifestos corpus of U.S. political opinion books, where we characterize trends in cited belief holders—respected allies and opposed bogeymen—across U.S. political ideologies.
Using observed language to understand interpersonal interactions is important in high-stakes decision making. We propose a causal research design for observational (non-experimental) data to estimate the natural direct and indirect effects of social group signals (e.g. race or gender) on speakers’ responses with separate aspects of language as causal mediators. We illustrate the promises and challenges of this framework via a theoretical case study of the effect of an advocate’s gender on interruptions from justices during U.S. Supreme Court oral arguments. We also discuss challenges conceptualizing and operationalizing causal variables such as gender and language that comprise of many components, and we articulate technical open challenges such as temporal dependence between language mediators in conversational settings.
Methods and applications are inextricably linked in science, and in particular in the domain of text-as-data. In this paper, we examine one such text-as-data application, an established economic index that measures economic policy uncertainty from keyword occurrences in news. This index, which is shown to correlate with firm investment, employment, and excess market returns, has had substantive impact in both the private sector and academia. Yet, as we revisit and extend the original authors’ annotations and text measurements we find interesting text-as-data methodological research questions: (1) Are annotator disagreements a reflection of ambiguity in language? (2) Do alternative text measurements correlate with one another and with measures of external predictive validity? We find for this application (1) some annotator disagreements of economic policy uncertainty can be attributed to ambiguity in language, and (2) switching measurements from keyword-matching to supervised machine learning classifiers results in low correlation, a concerning implication for the validity of the index.
Popular media reflects and reinforces societal biases through the use of tropes, which are narrative elements, such as archetypal characters and plot arcs, that occur frequently across media. In this paper, we specifically investigate gender bias within a large collection of tropes. To enable our study, we crawl tvtropes.org, an online user-created repository that contains 30K tropes associated with 1.9M examples of their occurrences across film, television, and literature. We automatically score the “genderedness” of each trope in our TVTROPES dataset, which enables an analysis of (1) highly-gendered topics within tropes, (2) the relationship between gender bias and popular reception, and (3) how the gender of a work’s creator correlates with the types of tropes that they use.
Many applications of computational social science aim to infer causal conclusions from non-experimental data. Such observational data often contains confounders, variables that influence both potential causes and potential effects. Unmeasured or latent confounders can bias causal estimates, and this has motivated interest in measuring potential confounders from observed text. For example, an individual’s entire history of social media posts or the content of a news article could provide a rich measurement of multiple confounders. Yet, methods and applications for this problem are scattered across different communities and evaluation practices are inconsistent. This review is the first to gather and categorize these examples and provide a guide to data-processing and evaluation decisions. Despite increased attention on adjusting for confounding using text, there are still many open problems, which we highlight in this paper.
Search applications often display shortened sentences which must contain certain query terms and must fit within the space constraints of a user interface. This work introduces a new transition-based sentence compression technique developed for such settings. Our query-focused method constructs length and lexically constrained compressions in linear time, by growing a subgraph in the dependency parse of a sentence. This theoretically efficient approach achieves an 11x empirical speedup over baseline ILP methods, while better reconstructing gold constrained shortenings. Such speedups help query-focused applications, because users are measurably hindered by interface lags. Additionally, our technique does not require an ILP solver or a GPU.
Sports broadcasters inject drama into play-by-play commentary by building team and player narratives through subjective analyses and anecdotes. Prior studies based on small datasets and manual coding show that such theatrics evince commentator bias in sports broadcasts. To examine this phenomenon, we assemble FOOTBALL, which contains 1,455 broadcast transcripts from American football games across six decades that are automatically annotated with 250K player mentions and linked with racial metadata. We identify major confounding factors for researchers examining racial bias in FOOTBALL, and perform a computational analysis that supports conclusions from prior social science studies.
Concept maps are visual summaries, structured as directed graphs: important concepts from a dataset are displayed as vertexes, and edges between vertexes show natural language descriptions of the relationships between the concepts on the map. Thus far, preliminary attempts at automatically creating concept maps have focused on building static summaries. However, in interactive settings, users will need to dynamically investigate particular relationships between pairs of concepts. For instance, a historian using a concept map browser might decide to investigate the relationship between two politicians in a news archive. We present a model which responds to such queries by returning one or more short, importance-ranked, natural language descriptions of the relationship between two requested concepts, for display in a visual interface. Our model is trained on a new public dataset, collected for this task.
Prevalence estimation is the task of inferring the relative frequency of classes of unlabeled examples in a group—for example, the proportion of a document collection with positive sentiment. Previous work has focused on aggregating and adjusting discriminative individual classifiers to obtain prevalence point estimates. But imperfect classifier accuracy ought to be reflected in uncertainty over the predicted prevalence for scientifically valid inference. In this work, we present (1) a generative probabilistic modeling approach to prevalence estimation, and (2) the construction and evaluation of prevalence confidence intervals; in particular, we demonstrate that an off-the-shelf discriminative classifier can be given a generative re-interpretation, by backing out an implicit individual-level likelihood function, which can be used to conduct fast and simple group-level Bayesian inference. Empirically, we demonstrate our approach provides better confidence interval coverage than an alternative, and is dramatically more robust to shifts in the class prior between training and testing.
Dependency parsing research, which has made significant gains in recent years, typically focuses on improving the accuracy of single-tree predictions. However, ambiguity is inherent to natural language syntax, and communicating such ambiguity is important for error analysis and better-informed downstream applications. In this work, we propose a transition sampling algorithm to sample from the full joint distribution of parse trees defined by a transition-based parsing model, and demonstrate the use of the samples in probabilistic dependency analysis. First, we define the new task of dependency path prediction, inferring syntactic substructures over part of a sentence, and provide the first analysis of performance on this task. Second, we demonstrate the usefulness of our Monte Carlo syntax marginal method for parser error analysis and calibration. Finally, we use this method to propagate parse uncertainty to two downstream information extraction applications: identifying persons killed by police and semantic role assignment.
This work introduces a new problem, relational summarization, in which the goal is to generate a natural language summary of the relationship between two lexical items in a corpus, without reference to a knowledge base. Motivated by the needs of novel user interfaces, we define the task and give examples of its application. We also present a new query-focused method for finding natural language sentences which express relationships. Our method allows for summarization of more than two times more query pairs than baseline relation extractors, while returning measurably more readable output. Finally, to help guide future work, we analyze the challenges of relational summarization using both a news and a social media corpus.
Sequence to sequence (seq2seq) models are often employed in settings where the target output is natural language. However, the syntactic properties of the language generated from these models are not well understood. We explore whether such output belongs to a formal and realistic grammar, by employing the English Resource Grammar (ERG), a broad coverage, linguistically precise HPSG-based grammar of English. From a French to English parallel corpus, we analyze the parseability and grammatical constructions occurring in output from a seq2seq translation model. Over 93% of the model translations are parseable, suggesting that it learns to generate conforming to a grammar. The model has trouble learning the distribution of rarer syntactic rules, and we pinpoint several constructions that differentiate translations between the references and our model.
Due to the presence of both Twitter-specific conventions and non-standard and dialectal language, Twitter presents a significant parsing challenge to current dependency parsing tools. We broaden English dependency parsing to handle social media English, particularly social media African-American English (AAE), by developing and annotating a new dataset of 500 tweets, 250 of which are in AAE, within the Universal Dependencies 2.0 framework. We describe our standards for handling Twitter- and AAE-specific features and evaluate a variety of cross-domain strategies for improving parsing with no, or very little, in-domain labeled data, including a new data synthesis approach. We analyze these methods’ impact on performance disparities between AAE and Mainstream American English tweets, and assess parsing accuracy for specific AAE lexical and syntactic features. Our annotated data and a parsing model are available at: http://slanglab.cs.umass.edu/TwitterAAE/.
We propose a new, socially-impactful task for natural language processing: from a news corpus, extract names of persons who have been killed by police. We present a newly collected police fatality corpus, which we release publicly, and present a model to solve this problem that uses EM-based distant supervision with logistic regression and convolutional neural network classifiers. Our model outperforms two off-the-shelf event extractor systems, and it can suggest candidate victim names in some cases faster than one of the major manually-collected police fatality databases.
While language identification works well on standard texts, it performs much worse on social media language, in particular dialectal language—even for English. First, to support work on English language identification, we contribute a new dataset of tweets annotated for English versus non-English, with attention to ambiguity, code-switching, and automatic generation issues. It is randomly sampled from all public messages, avoiding biases towards pre-existing language classifiers. Second, we find that a demographic language model—which identifies messages with language similar to that used by several U.S. ethnic populations on Twitter—can be used to improve English language identification performance when combined with a traditional supervised language identifier. It increases recall with almost no loss of precision, including, surprisingly, for English messages written by non-U.S. authors. Our dataset and identifier ensemble are available online.