In vision-language pre-training (VLP), masked image modeling (MIM) has recently been introduced for fine-grained cross-modal alignment. However, in most existing methods, the reconstruction targets for MIM lack high-level semantics, and text is not sufficiently involved in masked modeling. These two drawbacks limit the effect of MIM in facilitating cross-modal semantic alignment. In this work, we propose a semantics-enhanced cross-modal MIM framework (SemMIM) for vision-language representation learning. Specifically, to provide more semantically meaningful supervision for MIM, we propose a local semantics enhancing approach, which harvest high-level semantics from global image features via self-supervised agreement learning and transfer them to local patch encodings by sharing the encoding space. Moreover, to achieve deep involvement of text during the entire MIM process, we propose a text-guided masking strategy and devise an efficient way of injecting textual information in both masked modeling and reconstruction target acquisition. Experimental results validate that our method improves the effectiveness of the MIM task in facilitating cross-modal semantic alignment. Compared to previous VLP models with similar model size and data scale, our SemMIM model achieves state-of-the-art or competitive performance on multiple downstream vision-language tasks.
In video-text retrieval, most existing methods adopt the dual-encoder architecture for fast retrieval, which employs two individual encoders to extract global latent representations for videos and texts. However, they face challenges in capturing fine-grained semantic concepts. In this work, we propose the UNIFY framework, which learns lexicon representations to capture fine-grained semantics and combines the strengths of latent and lexicon representations for video-text retrieval. Specifically, we map videos and texts into a pre-defined lexicon space, where each dimension corresponds to a semantic concept. A two-stage semantics grounding approach is proposed to activate semantically relevant dimensions and suppress irrelevant dimensions. The learned lexicon representations can thus reflect fine-grained semantics of videos and texts. Furthermore, to leverage the complementarity between latent and lexicon representations, we propose a unified learning scheme to facilitate mutual learning via structure sharing and self-distillation. Experimental results show our UNIFY framework largely outperforms previous video-text retrieval methods, with 4.8% and 8.2% Recall@1 improvement on MSR-VTT and DiDeMo respectively.
There are three problems existing in the popular data-to-text datasets. First, the large-scale datasets either contain noise or lack real application scenarios. Second, the datasets close to real applications are relatively small in size. Last, current datasets bias in the English language while leaving other languages underexplored.To alleviate these limitations, in this paper, we present CATS, a pragmatic Chinese answer-to-sequence dataset with large scale and high quality. The dataset aims to generate textual descriptions for the answer in the practical TableQA system. Further, to bridge the structural gap between the input SQL and table and establish better semantic alignments, we propose a Unified Graph Transformation approach to establish a joint encoding space for the two hybrid knowledge resources and convert this task to a graph-to-text problem. The experiment results demonstrate the effectiveness of our proposed method. Further analysis on CATS attests to both the high quality and challenges of the dataset
Table-to-text generation aims at automatically generating text to help people conveniently obtain salient information in tables. Recent works explicitly decompose the generation process into content planning and surface generation stages, employing two autoregressive networks for them respectively. However, they are computationally expensive due to the non-parallelizable nature of autoregressive decoding and the redundant parameters of two networks. In this paper, we propose the first totally non-autoregressive table-to-text model (Plan-then-Seam, PTS) that produces its outputs in parallel with one single network.PTS firstly writes and calibrates one plan of the content to be generated with a novel rethinking pointer predictor, and then takes the plan as the context for seaming to decode the description. These two steps share parameters and perform iteratively to capture token inter-dependency while keeping parallel decoding. Experiments on two public benchmarks show that PTS achieves 3.0 5.6 times speedup for inference time, reducing 50% parameters, while maintaining as least comparable performance against strong two-stage table-to-text competitors.
Knowledge Graph Completion (KGC) often requires both KG structural and textual information to be effective. Pre-trained Language Models (PLMs) have been used to learn the textual information, usually under the fine-tune paradigm for the KGC task. However, the fine-tuned PLMs often overwhelmingly focus on the textual information and overlook structural knowledge. To tackle this issue, this paper proposes CSProm-KG (Conditional Soft Prompts for KGC) which maintains a balance between structural information and textual knowledge. CSProm-KG only tunes the parameters of Conditional Soft Prompts that are generated by the entities and relations representations. We verify the effectiveness of CSProm-KG on three popular static KGC benchmarks WN18RR, FB15K-237 and Wikidata5M, and two temporal KGC benchmarks ICEWS14 and ICEWS05-15. CSProm-KG outperforms competitive baseline models and sets new state-of-the-art on these benchmarks. We conduct further analysis to show (i) the effectiveness of our proposed components, (ii) the efficiency of CSProm-KG, and (iii) the flexibility of CSProm-KG.
Knowledge Graph Completion (KGC) has been recently extended to multiple knowledge graph (KG) structures, initiating new research directions, e.g. static KGC, temporal KGC and few-shot KGC. Previous works often design KGC models closely coupled with specific graph structures, which inevitably results in two drawbacks: 1) structure-specific KGC models are mutually incompatible; 2) existing KGC methods are not adaptable to emerging KGs. In this paper, we propose KG-S2S, a Seq2Seq generative framework that could tackle different verbalizable graph structures by unifying the representation of KG facts into “flat” text, regardless of their original form. To remedy the KG structure information loss from the “flat” text, we further improve the input representations of entities and relations, and the inference algorithm in KG-S2S. Experiments on five benchmarks show that KG-S2S outperforms many competitive baselines, setting new state-of-the-art performance. Finally, we analyze KG-S2S’s ability on the different relations and the Non-entity Generations.
Keyphrase extraction (KPE) automatically extracts phrases in a document that provide a concise summary of the core content, which benefits downstream information retrieval and NLP tasks. Previous state-of-the-art methods select candidate keyphrases based on the similarity between learned representations of the candidates and the document. They suffer performance degradation on long documents due to discrepancy between sequence lengths which causes mismatch between representations of keyphrase candidates and the document. In this work, we propose a novel unsupervised embedding-based KPE approach, Masked Document Embedding Rank (MDERank), to address this problem by leveraging a mask strategy and ranking candidates by the similarity between embeddings of the source document and the masked document. We further develop a KPE-oriented BERT (KPEBERT) model by proposing a novel self-supervised contrastive learning method, which is more compatible to MDERank than vanilla BERT. Comprehensive evaluations on six KPE benchmarks demonstrate that the proposed MDERank outperforms state-of-the-art unsupervised KPE approach by average 1.80 F1@15 improvement. MDERank further benefits from KPEBERT and overall achieves average 3.53 F1@15 improvement over SIFRank.
A desirable dialog system should be able to continually learn new skills without forgetting old ones, and thereby adapt to new domains or tasks in its life cycle. However, continually training a model often leads to a well-known catastrophic forgetting issue. In this paper, we present Continual Prompt Tuning, a parameter-efficient framework that not only avoids forgetting but also enables knowledge transfer between tasks. To avoid forgetting, we only learn and store a few prompt tokens’ embeddings for each task while freezing the backbone pre-trained model. To achieve bi-directional knowledge transfer among tasks, we propose several techniques (continual prompt initialization, query fusion, and memory replay) to transfer knowledge from preceding tasks and a memory-guided technique to transfer knowledge from subsequent tasks. Extensive experiments demonstrate the effectiveness and efficiency of our proposed method on continual learning for dialog state tracking, compared with state-of-the-art baselines.
The rapid growth in published clinical trials makes it difficult to maintain up-to-date systematic reviews, which require finding all relevant trials. This leads to policy and practice decisions based on out-of-date, incomplete, and biased subsets of available clinical evidence. Extracting and then normalising Population, Intervention, Comparator, and Outcome (PICO) information from clinical trial articles may be an effective way to automatically assign trials to systematic reviews and avoid searching and screening—the two most time-consuming systematic review processes. We propose and test a novel approach to PICO span detection. The major difference between our proposed method and previous approaches comes from detecting spans without needing annotated span data and using only crowdsourced sentence-level annotations. Experiments on two datasets show that PICO span detection results achieve much higher results for recall when compared to fully supervised methods with PICO sentence detection at least as good as human annotations. By removing the reliance on expert annotations for span detection, this work could be used in a human-machine pipeline for turning low-quality, crowdsourced, and sentence-level PICO annotations into structured information that can be used to quickly assign trials to relevant systematic reviews.
In this paper, we present an automatic knowledge base construction system from large scale enterprise documents with minimal efforts of human intervention. In the design and deployment of such a knowledge mining system for enterprise, we faced several challenges including data distributional shift, performance evaluation, compliance requirements and other practical issues. We leveraged state-of-the-art deep learning models to extract information (named entities and definitions) at per document level, then further applied classical machine learning techniques to process global statistical information to improve the knowledge base. Experimental results are reported on actual enterprise documents. This system is currently serving as part of a Microsoft 365 service.
Further pre-training language models on in-domain data (domain-adaptive pre-training, DAPT) or task-relevant data (task-adaptive pre-training, TAPT) before fine-tuning has been shown to improve downstream tasks’ performances. However, in task-oriented dialog modeling, we observe that further pre-training MLM does not always boost the performance on a downstream task. We find that DAPT is beneficial in the low-resource setting, but as the fine-tuning data size grows, DAPT becomes less beneficial or even useless, and scaling the size of DAPT data does not help. Through Representational Similarity Analysis, we conclude that more data for fine-tuning yields greater change of the model’s representations and thus reduces the influence of initialization.
We present a web-based interface that automatically assesses reading difficulty of Chinese texts. The system performs word segmentation, part-of-speech tagging and dependency parsing on the input text, and then determines the difficulty levels of the vocabulary items and grammatical constructions in the text. Furthermore, the system highlights the words and phrases that must be simplified or re-written in order to conform to the user-specified target difficulty level. Evaluation results show that the system accurately identifies the vocabulary level of 89.9% of the words, and detects grammar points at 0.79 precision and 0.83 recall.