Bill Byrne

UCSD Ph.d; https://www.linkedin.com/in/billb/

Other people with similar names: Bill Byrne (University of Cambridge)


2022

pdf
The Teacher-Student Chatroom Corpus version 2: more lessons, new annotation, automatic detection of sequence shifts
Andrew Caines | Helen Yannakoudakis | Helen Allen | Pascual Pérez-Paredes | Bill Byrne | Paula Buttery
Proceedings of the 11th Workshop on NLP for Computer Assisted Language Learning

2021

pdf
Transferable Dialogue Systems and User Simulators
Bo-Hsiang Tseng | Yinpei Dai | Florian Kreyssig | Bill Byrne
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

One of the difficulties in training dialogue systems is the lack of training data. We explore the possibility of creating dialogue data through the interaction between a dialogue system and a user simulator. Our goal is to develop a modelling framework that can incorporate new dialogue scenarios through self-play between the two agents. In this framework, we first pre-train the two agents on a collection of source domain dialogues, which equips the agents to converse with each other via natural language. With further fine-tuning on a small amount of target domain data, the agents continue to interact with the aim of improving their behaviors using reinforcement learning with structured reward functions. In experiments on the MultiWOZ dataset, two practical transfer learning problems are investigated: 1) domain adaptation and 2) single-to-multiple domain transfer. We demonstrate that the proposed framework is highly effective in bootstrapping the performance of the two agents in transfer learning. We also show that our method leads to improvements in dialogue system performance on complete datasets.

pdf
TicketTalk: Toward human-level performance with end-to-end, transaction-based dialog systems
Bill Byrne | Karthik Krishnamoorthi | Saravanan Ganesh | Mihir Kale
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

We present a data-driven, end-to-end approach to transaction-based dialog systems that performs at near-human levels in terms of verbal response quality and factual grounding accuracy. We show that two essential components of the system produce these results: a sufficiently large and diverse, in-domain labeled dataset, and a neural network-based, pre-trained model that generates both verbal responses and API call predictions. In terms of data, we introduce TicketTalk, a movie ticketing dialog dataset with 23,789 annotated conversations. The conversations range from completely open-ended and unrestricted to more structured, both in terms of their knowledge base, discourse features, and number of turns. In qualitative human evaluations, model-generated responses trained on just 10,000 TicketTalk dialogs were rated to “make sense” 86.5% of the time, almost the same as human responses in the same contexts. Our simple, API-focused annotation schema results in a much easier labeling task making it faster and more cost effective. It is also the key component for being able to predict API calls accurately. We handle factual grounding by incorporating API calls in the training data, allowing our model to learn which actions to take and when. Trained on the same 10,000-dialog set, the model’s API call predictions were rated to be correct 93.9% of the time in our evaluations, surpassing the ratings for the corresponding human labels. We show how API prediction and response generation scores improve as the dataset size incrementally increases from 5000 to 21,000 dialogs. Our analysis also clearly illustrates the benefits of pre-training. To facilitate future work on transaction-based dialog systems, we are publicly releasing the TicketTalk dataset at https://git.io/JL8an.

2019

pdf
Coached Conversational Preference Elicitation: A Case Study in Understanding Movie Preferences
Filip Radlinski | Krisztian Balog | Bill Byrne | Karthik Krishnamoorthi
Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue

Conversational recommendation has recently attracted significant attention. As systems must understand users’ preferences, training them has called for conversational corpora, typically derived from task-oriented conversations. We observe that such corpora often do not reflect how people naturally describe preferences. We present a new approach to obtaining user preferences in dialogue: Coached Conversational Preference Elicitation. It allows collection of natural yet structured conversational preferences. Studying the dialogues in one domain, we present a brief quantitative analysis of how people describe movie preferences at scale. Demonstrating the methodology, we release the CCPE-M dataset to the community with over 500 movie preference dialogues expressing over 10,000 preferences.

pdf
Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset
Bill Byrne | Karthik Krishnamoorthi | Chinnadhurai Sankar | Arvind Neelakantan | Ben Goodrich | Daniel Duckworth | Semih Yavuz | Amit Dubey | Kyu-Young Kim | Andy Cedilnik
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

A significant barrier to progress in data-driven approaches to building dialog systems is the lack of high quality, goal-oriented conversational data. To help satisfy this elementary requirement, we introduce the initial release of the Taskmaster-1 dataset which includes 13,215 task-based dialogs comprising six domains. Two procedures were used to create this collection, each with unique advantages. The first involves a two-person, spoken “Wizard of Oz” (WOz) approach in which trained agents and crowdsourced workers interact to complete the task while the second is “self-dialog” in which crowdsourced workers write the entire dialog themselves. We do not restrict the workers to detailed scripts or to a small knowledge base and hence we observe that our dataset contains more realistic and diverse conversations in comparison to existing datasets. We offer several baseline models including state of the art neural seq2seq architectures with benchmark performance as well as qualitative human evaluations. Dialogs are labeled with API calls and arguments, a simple and cost effective approach which avoids the requirement of complex annotation schema. The layer of abstraction between the dialog model and the service provider API allows for a given model to interact with multiple services that provide similar functionally. Finally, the dataset will evoke interest in written vs. spoken language, discourse patterns, error handling and other linguistic phenomena related to dialog system research, development and design.