Biao Cheng


2022

pdf
Metric-guided Distillation: Distilling Knowledge from the Metric to Ranker and Retriever for Generative Commonsense Reasoning
Xingwei He | Yeyun Gong | A-Long Jin | Weizhen Qi | Hang Zhang | Jian Jiao | Bartuer Zhou | Biao Cheng | Sm Yiu | Nan Duan
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Commonsense generation aims to generate a realistic sentence describing a daily scene under the given concepts, which is very challenging, since it requires models to have relational reasoning and compositional generalization capabilities. Previous work focuses on retrieving prototype sentences for the provided concepts to assist generation. They first use a sparse retriever to retrieve candidate sentences, then re-rank the candidates with a ranker. However, the candidates returned by their ranker may not be the most relevant sentences, since the ranker treats all candidates equally without considering their relevance to the reference sentences of the given concepts. Another problem is that re-ranking is very expensive, but only using retrievers will seriously degrade the performance of their generation models. To solve these problems, we propose the metric distillation rule to distill knowledge from the metric (e.g., BLEU) to the ranker. We further transfer the critical knowledge summarized by the distilled ranker to the retriever. In this way, the relevance scores of candidate sentences predicted by the ranker and retriever will be more consistent with their quality measured by the metric. Experimental results on the CommonGen benchmark verify the effectiveness of our proposed method: (1) Our generation model with the distilled ranker achieves a new state-of-the-art result. (2) Our generation model with the distilled retriever even surpasses the previous SOTA.

pdf
DialogVED: A Pre-trained Latent Variable Encoder-Decoder Model for Dialog Response Generation
Wei Chen | Yeyun Gong | Song Wang | Bolun Yao | Weizhen Qi | Zhongyu Wei | Xiaowu Hu | Bartuer Zhou | Yi Mao | Weizhu Chen | Biao Cheng | Nan Duan
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Dialog response generation in open domain is an important research topic where the main challenge is to generate relevant and diverse responses. In this paper, we propose a new dialog pre-training framework called DialogVED, which introduces continuous latent variables into the enhanced encoder-decoder pre-training framework to increase the relevance and diversity of responses. With the help of a large dialog corpus (Reddit), we pre-train the model using the following 4 tasks, used in training language models (LMs) and Variational Autoencoders (VAEs) literature: 1) masked language model; 2) response generation; 3) bag-of-words prediction; and 4) KL divergence reduction. We also add additional parameters to model the turn structure in dialogs to improve the performance of the pre-trained model. We conduct experiments on PersonaChat, DailyDialog, and DSTC7-AVSD benchmarks for response generation. Experimental results show that our model achieves the new state-of-the-art results on all these datasets.

pdf
Contextual Fine-to-Coarse Distillation for Coarse-grained Response Selection in Open-Domain Conversations
Wei Chen | Yeyun Gong | Can Xu | Huang Hu | Bolun Yao | Zhongyu Wei | Zhihao Fan | Xiaowu Hu | Bartuer Zhou | Biao Cheng | Daxin Jiang | Nan Duan
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We study the problem of coarse-grained response selection in retrieval-based dialogue systems. The problem is equally important with fine-grained response selection, but is less explored in existing literature. In this paper, we propose a Contextual Fine-to-Coarse (CFC) distilled model for coarse-grained response selection in open-domain conversations. In our CFC model, dense representations of query, candidate contexts and responses is learned based on the multi-tower architecture using contextual matching, and richer knowledge learned from the one-tower architecture (fine-grained) is distilled into the multi-tower architecture (coarse-grained) to enhance the performance of the retriever. To evaluate the performance of the proposed model, we construct two new datasets based on the Reddit comments dump and Twitter corpus. Extensive experimental results on the two datasets show that the proposed method achieves huge improvement over all evaluation metrics compared with traditional baseline methods.

2021

pdf
ProphetNet-X: Large-Scale Pre-training Models for English, Chinese, Multi-lingual, Dialog, and Code Generation
Weizhen Qi | Yeyun Gong | Yu Yan | Can Xu | Bolun Yao | Bartuer Zhou | Biao Cheng | Daxin Jiang | Jiusheng Chen | Ruofei Zhang | Houqiang Li | Nan Duan
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

Now, the pre-training technique is ubiquitous in natural language processing field. ProphetNet is a pre-training based natural language generation method which shows powerful performance on English text summarization and question generation tasks. In this paper, we extend ProphetNet into other domains and languages, and present the ProphetNet family pre-training models, named ProphetNet-X, where X can be English, Chinese, Multi-lingual, and so on. We pre-train a cross-lingual generation model ProphetNet-Multi, a Chinese generation model ProphetNet-Zh, two open-domain dialog generation models ProphetNet-Dialog-En and ProphetNet-Dialog-Zh. And also, we provide a PLG (Programming Language Generation) model ProphetNet-Code to show the generation performance besides NLG (Natural Language Generation) tasks. In our experiments, ProphetNet-X models achieve new state-of-the-art performance on 10 benchmarks. All the models of ProphetNet-X share the same model structure, which allows users to easily switch between different models. We make the code and models publicly available, and we will keep updating more pre-training models and finetuning scripts.