Abstract
Parsing sentences to linguistically-expressive semantic representations is a key goal of Natural Language Processing. Yet statistical parsing has focussed almost exclusively on bilexical dependencies or domain-specific logical forms. We propose a neural encoder-decoder transition-based parser which is the first full-coverage semantic graph parser for Minimal Recursion Semantics (MRS). The model architecture uses stack-based embedding features, predicting graphs jointly with unlexicalized predicates and their token alignments. Our parser is more accurate than attention-based baselines on MRS, and on an additional Abstract Meaning Representation (AMR) benchmark, and GPU batch processing makes it an order of magnitude faster than a high-precision grammar-based parser. Further, the 86.69% Smatch score of our MRS parser is higher than the upper-bound on AMR parsing, making MRS an attractive choice as a semantic representation.- Anthology ID:
- P17-1112
- Volume:
- Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
- Month:
- July
- Year:
- 2017
- Address:
- Vancouver, Canada
- Editors:
- Regina Barzilay, Min-Yen Kan
- Venue:
- ACL
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 1215–1226
- Language:
- URL:
- https://aclanthology.org/P17-1112
- DOI:
- 10.18653/v1/P17-1112
- Cite (ACL):
- Jan Buys and Phil Blunsom. 2017. Robust Incremental Neural Semantic Graph Parsing. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1215–1226, Vancouver, Canada. Association for Computational Linguistics.
- Cite (Informal):
- Robust Incremental Neural Semantic Graph Parsing (Buys & Blunsom, ACL 2017)
- PDF:
- https://preview.aclanthology.org/nschneid-patch-3/P17-1112.pdf
- Code
- janmbuys/DeepDeepParser