Abstract
Automatic natural language processing of large texts often presents recurring challenges in multiple languages: even for most advanced tasks, the texts are first processed by basic processing steps – from tokenization to parsing. We present an extremely simple-to-use tool consisting of one binary and one model (per language), which performs these tasks for multiple languages without the need for any other external data. UDPipe, a pipeline processing CoNLL-U-formatted files, performs tokenization, morphological analysis, part-of-speech tagging, lemmatization and dependency parsing for nearly all treebanks of Universal Dependencies 1.2 (namely, the whole pipeline is currently available for 32 out of 37 treebanks). In addition, the pipeline is easily trainable with training data in CoNLL-U format (and in some cases also with additional raw corpora) and requires minimal linguistic knowledge on the users’ part. The training code is also released.- Anthology ID:
- L16-1680
- Volume:
- Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)
- Month:
- May
- Year:
- 2016
- Address:
- Portorož, Slovenia
- Editors:
- Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Sara Goggi, Marko Grobelnik, Bente Maegaard, Joseph Mariani, Helene Mazo, Asuncion Moreno, Jan Odijk, Stelios Piperidis
- Venue:
- LREC
- SIG:
- Publisher:
- European Language Resources Association (ELRA)
- Note:
- Pages:
- 4290–4297
- Language:
- URL:
- https://aclanthology.org/L16-1680
- DOI:
- Cite (ACL):
- Milan Straka, Jan Hajič, and Jana Straková. 2016. UDPipe: Trainable Pipeline for Processing CoNLL-U Files Performing Tokenization, Morphological Analysis, POS Tagging and Parsing. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), pages 4290–4297, Portorož, Slovenia. European Language Resources Association (ELRA).
- Cite (Informal):
- UDPipe: Trainable Pipeline for Processing CoNLL-U Files Performing Tokenization, Morphological Analysis, POS Tagging and Parsing (Straka et al., LREC 2016)
- PDF:
- https://preview.aclanthology.org/nschneid-patch-3/L16-1680.pdf
- Data
- Universal Dependencies