Abstract
This paper presents a two-step methodology to annotate spatial knowledge on top of OntoNotes semantic roles. First, we manipulate semantic roles to automatically generate potential additional spatial knowledge. Second, we crowdsource annotations with Amazon Mechanical Turk to either validate or discard the potential additional spatial knowledge. The resulting annotations indicate whether entities are or are not located somewhere with a degree of certainty, and temporally anchor this spatial information. Crowdsourcing experiments show that the additional spatial knowledge is ubiquitous and intuitive to humans, and experimental results show that it can be inferred automatically using standard supervised machine learning techniques.- Anthology ID:
- L16-1604
- Volume:
- Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)
- Month:
- May
- Year:
- 2016
- Address:
- Portorož, Slovenia
- Editors:
- Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Sara Goggi, Marko Grobelnik, Bente Maegaard, Joseph Mariani, Helene Mazo, Asuncion Moreno, Jan Odijk, Stelios Piperidis
- Venue:
- LREC
- SIG:
- Publisher:
- European Language Resources Association (ELRA)
- Note:
- Pages:
- 3814–3821
- Language:
- URL:
- https://aclanthology.org/L16-1604
- DOI:
- Cite (ACL):
- Alakananda Vempala and Eduardo Blanco. 2016. Annotating Temporally-Anchored Spatial Knowledge on Top of OntoNotes Semantic Roles. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), pages 3814–3821, Portorož, Slovenia. European Language Resources Association (ELRA).
- Cite (Informal):
- Annotating Temporally-Anchored Spatial Knowledge on Top of OntoNotes Semantic Roles (Vempala & Blanco, LREC 2016)
- PDF:
- https://preview.aclanthology.org/nschneid-patch-3/L16-1604.pdf
- Data
- FrameNet, NomBank