Detecting Optional Arguments of Verbs

András Kornai, Dávid Márk Nemeskey, Gábor Recski


Abstract
We propose a novel method for detecting optional arguments of Hungarian verbs using only positive data. We introduce a custom variant of collexeme analysis that explicitly models the noise in verb frames. Our method is, for the most part, unsupervised: we use the spectral clustering algorithm described in Brew and Schulte in Walde (2002) to build a noise model from a short, manually verified seed list of verbs. We experimented with both raw count- and context-based clusterings and found their performance almost identical. The code for our algorithm and the frame list are freely available at http://hlt.bme.hu/en/resources/tade.
Anthology ID:
L16-1448
Volume:
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)
Month:
May
Year:
2016
Address:
Portorož, Slovenia
Editors:
Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Sara Goggi, Marko Grobelnik, Bente Maegaard, Joseph Mariani, Helene Mazo, Asuncion Moreno, Jan Odijk, Stelios Piperidis
Venue:
LREC
SIG:
Publisher:
European Language Resources Association (ELRA)
Note:
Pages:
2815–2818
Language:
URL:
https://aclanthology.org/L16-1448
DOI:
Bibkey:
Cite (ACL):
András Kornai, Dávid Márk Nemeskey, and Gábor Recski. 2016. Detecting Optional Arguments of Verbs. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), pages 2815–2818, Portorož, Slovenia. European Language Resources Association (ELRA).
Cite (Informal):
Detecting Optional Arguments of Verbs (Kornai et al., LREC 2016)
Copy Citation:
PDF:
https://preview.aclanthology.org/nschneid-patch-3/L16-1448.pdf