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Abstract

State bills have a significant impact on various
aspects of society, including health, education,
and the economy. Consequently, it is crucial to
conduct systematic research on state bills be-
fore and after they are enacted to evaluate their
benefits and drawbacks, thereby guiding future
decision-making. In this work, we developed
the first state-level deep learning framework
that (1) handles the complex and inconsistent
language of policies across US states using gen-
erative large language models and (2) decodes
legislators’ behavior and implications of state
policies by establishing a shared nationwide
network, enriched with diverse contexts, such
as information on interest groups influencing
public policy and legislators’ courage test re-
sults, which reflect their political positions.

1 Introduction

State policies affect our lives in many ways, such
as our health, taxes, and rights. State legislatures
can protect or limit our freedoms in areas like vot-
ing, reproduction, labor, and more. State laws also
impact national issues, such as federal courts defer-
ring to states on constitutional matters and federal
laws responding to state laws (see Appendix A).

Thus, our goal is to build an NLP/ML frame-
work for understanding state-level legislative pro-
cess in the US. This can help the public to know
how bills affect them, check if legislators vote con-
sistently with their public views, and find out who
influence them. While promising NLP/ML studies,
e.g., (Feng et al., 2022; Davoodi et al., 2022), pre-
dict bill or vote outcomes using bill text and legisla-
tor information, they have limitations: most focus
on centralized federal-level process, they miss out
some state-level contextual information such as in-
fluence of local lobbyists, they use low quality and
inconsistent state data, they lack support for non-
vote prediction tasks, or they often use traditional
NLP/ML architectures. Our framework addresses

these limitations and improves the understanding
of state legislative process and its implications:
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Figure 1: Correlation between (a) Interest group (IG)
scores of legislators and their voting on a bill favoring
the IG and (b) Legislators’ responses to a courage test
question and their voting pattern on a related bill.

Normalizing the language of state legislation.
Our framework’s first pillar addresses the inconsis-
tency, verbosity, and complexity of state-level leg-
islative data (LegiScan, 2023; NCSL, 2024). State
bills vary in language and format for the same topic,
making cross-state policy analysis difficult. They
are also lengthy and detailed, obscuring the main
points and implications of the bills. State bills often
require domain knowledge to comprehend, limit-
ing their accessibility for the public. Therefore,
we normalize and optimize state legislative data by
using Generative LLMs, e.g., OpenAI GPT (Ope-
nAI, 2023). This involves generating consistent
summaries of bills, enriching legislator’s data, and
identifying potential winners/losers of bills. This
way, we can better compare similar policies across
different states and topics. We evaluate the qual-
ity of LLM summaries by comparing them with
expert-written ones and explore the feasibility of
using open-source LLMs (Appendix C).

Capturing inter- and intra-state contexts. We
also aim to understand how state bills relate to other
external factors (e.g., cross-state effects). Thus,
our framework adheres to two design principles:
(1) We study all 50 US states, unlike most re-
cent studies that focus on a few states (Davoodi
et al., 2020). (2) We find and include impor-
tant inter-state and intra-state entities that affect
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state policies and were ignored before. Specifi-
cally, we include Interest Groups (IGs) that lobby
legislators for their values and affect the mak-
ing and passing of bills on issues like health
care. IGs assign scores to legislators based on
their policy alignment, which can indicate their
future voting patterns (Figure 1a). Also, we use
Political Courage Tests (PCTs) that ask candidates
to state their positions on issues related to their
session, which can reveal the genuine preferences
of legislators who may conceal them for elec-
toral/partisan motives (Figure 1b, Appendix D).

Efficient abstraction and embedding. To op-
erationalize our work, we construct a new text-
attributed graph abstraction to represent different
entities and relations in state legislative process
in a highly normalized linguistic and broadened
network contexts (Figure 2). On top of this abstrac-
tion, we enable diverse prediction tasks, beyond
predicting legislators’ votes, such as predicting
legislators’ courage test results and interest group
impacts that both have real-world use-cases (Sec-
tion 6). We argue that such tasks are interdependent
and can benefit from joint learning and represen-
tation. To efficiently deliver these, we develop a
new shared text and graph embedding architecture
(Figure 3), designed to handle longer legislative
texts and unseen entities more effectively. The
first in kind that combines the benefits of an effi-
cient non-generative LLM, OpenAI Ada (OpenAI,
2023), with that of a widely-adopted heterogeneous
GNN, RGCN (Schlichtkrull et al., 2018), to jointly
generate contextualized text and graph representa-
tions for nodes and relations.

Technical contributions: In summary, we
present the following technical contributions:

• Modeling state policies in wider intra-/inter-state
contexts overlooked by prior studies (Section 3).

• Using LLMs to solve linguistic issues in state
legislative data for the first time (Section 4).

• Creating a new dataset and nationwide abstrac-
tion of state legislative process and defining two
new prediction tasks (Section 5).

• Developing an efficient joint LLM and GNN em-
bedding and prediction architecture, better sup-
porting long texts and unseen nodes (Section 6).

• Showing our architecture’s superior performance
over robust text and graph baselines (Section 7).

2 Related Works

We discuss promising studies that have influenced
our work (Further discussion in Appendix D).

Bill progression classification. One research di-
rection aims to predict the likelihood of a congress
bill passing a certain legislative stage, e.g., clearing
a committee, which is a challenge that most bills
fail to meet. For instance, Yano et al. 2012 use
features related to the bill’s significance and bill’s
co-sponsors, to estimate the committee outcome.
Eidelman et al. 2018 conduct a similar analysis for
state bills and show the benefits of integrating bill
text with minimal contextual info. on legislators.

Roll-call (vote) classification. A related re-
search direction is to model how federal legislators
vote. Kraft et al. 2016; Patil et al. 2019 capture ide-
ological preferences of US congress members for
this task. Karimi et al. 2019; Kornilova et al. 2018
incorporate bills’ text and metadata of the sponsors.
Feng et al. 2022; Mou et al. 2021, 2023 build better
models for Congress legislators based on their info.
on social networks (Wikipedia, Twitter) and expert
knowledge websites (Think tanks). While Davoodi
et al. 2020, 2022 conduct similar studies for 3 US
states but with key limitations (see Section 1).

LLM applications. The evolution of LLMs, like
OpenAI’s GPT and Ada, has significantly improved
core NLP tasks and enabled new applications. For
instance, GPT-3 made accurate data annotation pos-
sible despite biases (Ding et al., 2022). GPT-3.5
enhanced this with better summarization of com-
plex user reviews (Bhaskar et al., 2023). GPT-4
takes it further, enabling assessments of second-
language proficiency aligned with standards such
as the CEFR (Yancey et al., 2023).

3 Broadening Political & Social Contexts

Our goal is to build a model that can better under-
stand legislators’ behavior and the impact of poli-
cies within and across states. Thus, we abstract the
state legislative process (detailed in Appendix A)
using a text-attributed graph and enrich it with di-
verse political-social contexts, derived from our
ablation study (Section 7). In the next section,
we apply our generative LLM optimization on the
graph to handle the linguistic challenges.

3.1 Nationwide Legislative Graph: Properties

Our proposed legislative graph abstraction, shown
in Figure 2, comes with four unique properties: Our
model is nationwide, interconnecting all 50 states,
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allowing us to compare legislative activities across
different states, e.g., abortion regulation (Ballotpe-
dia, 2024). It incorporates multiple types of hetero-
geneous entities, such as legislators, interest groups,
and political courage tests, with varying levels of
influence and involvement in the policy process. It
contains rich textual information for each node in
the graph, such as bills with titles and summaries
or interest groups with mission statements. This
enables us to extract meaningful insights from the
data. Additionally, it captures the relationships
among the nodes, such as co-sponsorship, endorse-
ment, or opposition, that reflect the alignment or
conflict between them. Next, we describe some key
components of our graph.
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Figure 2: LLM-optimized, contextualized, and nation-
wide legislative graph for analyzing state-level policies.

3.2 Modeling Legislators & Revisiting Bills

Legislators and bills are the most important com-
ponents of the legislative process. A state bill has
metadata such as title, official synopsis, status, and
sponsors, as well as a list of actions that track its
progress through different stages (e.g., introduction,
committee referral, floor vote). We add both bills
and their actions as nodes in the graph and connect
them with edges that indicate the temporal order of
the actions. We also add edges between legislators
and actions to represent their voting behavior and
between legislators and bills to model sponsorship.

Adopting bill highlights for normalizing state
bills. A major obstacle for legislative data anal-
ysis in the US is the inconsistency among differ-
ent states (LegiScan, 2023; NCSL, 2024). Each
state has its own way of writing, naming, summa-
rizing, and categorizing bills, making it hard to

compare and contrast them. Also, we have seen
bill titles and synopses can be missing, misleading
or vague. Unlike existing works, we propose to
use bill highlights or summaries of legislation writ-
ten by a group of legislative researchers as a better
alternative in the graph as well as ground-truth
to evaluate our LLM generated ones (Section 4).
These researchers (VoteSmart, 2023) read the text
of the bill and then write consistent summaries that
extract the most important information from each
bill and present it in a clear way (Examples in Ap-
pendix C). Bill highlights are more informative and
accurate than bill titles and synopses. Also, they
normalize our data across different US states and
make it easier to understand the impact and implica-
tions of each bill. Our experiments show bill high-
lights can boost the performance of two bill classi-
fication tasks by up to 3.5 F1 points, compared to
the official titles and synopses (Appendix B.4).

3.3 Incorporating Interest Groups (IGs)
Our legislative graph incorporates the data of in-
terest groups (IGs) that operate at different levels
(Figure 2): within a state, across multiple states,
and nationwide. This allows us to gain insights into
state policies, which were overlooked in previous
NLP/ML studies at the state level. IGs advocate
for causes or groups. They lobby directly or indi-
rectly to sway legislators’ votes. They offer infor-
mation, expertise, or resources to help legislators.
They also influence public opinion through media
or petitions to pressure legislators to align with
their interests. To capture all these interactions, we
represent IGs as nodes in the graph and include a
textual description of their activities, drawn from
their public mission statement or other sources on
the Internet, into these nodes. For example, this
is a part of textual info. associated with an IG in
Indiana:

Name: "Florida Planned Parenthood PAC", Descrip-
tion: The Florida Planned Parenthood PAC is the politi-
cal arm of Planned Parenthood organizations in Florida
and is a separate segregated political action committee,
which supports state candidates who support access to
safe/legal abortion and family planning health services...

IG relations (scores). We also study how IGs
affect legislators through their public ratings of leg-
islators. An IG score is a percentage that interest
groups give to legislators based on various factors,
e.g., money donations and historical voting align-
ment (See Appendix B). We collect these scores for
all legislators and model them as relations in the
graph (Figure 2). IGs publish these scores to influ-
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ence legislators’ future actions. We divide scores
into four categories: Worst: 0-25 Bad: 26-50%,
Good: 51-75%, Excellent: 76-100%; and create
corresponding relation types between IGs and leg-
islators in the graph. This is a sample IG score:

"RatingText":"Representative Bob Heaton supported
the interests of the Citizens Action Coalition of Indiana
32 percent in 2021.", "rating": "32", "Id": "1062",
"timespan": "2021", "ratingName": "Lifetime Posi-
tions", "Category": "Agriculture and Food"

3.4 Incorporating Political Courage Tests
To better understand state legislators’ voting be-
haviour, we need to know their motivations, pri-
orities, and commitments. Political courage tests
(PCTs), detailed in Appendix B.3, can reveal these
by asking them challenging questions–more ef-
fective than their social network information (Ap-
pendix D). These questions measure how much
legislators respect democracy, human rights, and
the rule of law. They also test how they deal with
unpopular issues, IGs, and minority rights. Some
frequently asked PCT questions are as follows:

(1) Do you support the prohibition of public funds for
organizations that perform abortions?
(2) Should background checks be required on gun sales
between private citizens at gun shows?
(3) Do you support pro-life or pro-choice legislation?

PCTs do not provide a clear way to compare dif-
ferent legislators or to identify patterns and trends
in their behavior. This is where our graph modeling
can offer a significant advantage. By representing
the PCT and its questions as nodes in a graph, and
linking them to the legislators who answer them
(Figure 2), we can create a rich and dynamic repre-
sentation of the political landscape. This allows us
to (a) better identify the similarities and differences
between legislators based on their answers; (b) eas-
ier analyze the relationships and influences among
legislators, IGs, and issues; and (c) better predict
how legislators might react to new legislation based
on their past performance. In this work, our focus is
on 2-choice (Yes/No) and 4-choice questions, mak-
ing up 95% of the tests on average.

4 LLM-Based Legislative Graph
Optimization

Before utilizing the legislative graph for training
and inference tasks, we implement a data optimiza-
tion phase. This phase is realized using a generative
Large Language Model (LLM) and includes: (a)
normalizing the textual attributes of nodes to ad-
dress linguistic challenges such as their verbosity,

complexity, and inconsistencies across states; (b)
enhancing the nodes with additional textual infor-
mation where necessary; and (c) uncovering and
formalizing latent relationships embedded within
the nodes’ textual data. These steps are crucial
for improving performance, as they enable a more
cohesive understanding of policies and legislative
actions related to the same topic at both intra- and
inter-state levels (Section 7).

4.1 LLM Approach to Bill Summarization
In Section 3, we discussed the benefits of adopt-
ing bill highlights written by researchers, which
serve to normalize the language of state policies
across the US. However, our dataset includes these
highlights for only a selection of state bills (see Sec-
tion 5). To enhance practicality and performance,
it is necessary to scale these highlights to a larger
number of bills, including new ones—for instance,
to potentially retrain our model with an expanded
dataset or to process new bills at inference time.
For this purpose, we utilize a generative LLM to
produce highlights for state bills, a task that would
be highly tedious for humans. LLMs assist us by
reading the full text of a bill and producing a con-
cise summary that capture its main points, objec-
tives, and impacts. We experimented with different
prompting strategies for GPT-3.5-turbo-16k
to summarize bills. Initially, we posed separate
questions and compiled the responses, but this
approach resulted in repetitive content. As a re-
sult, we refined our prompt to extract a comprehen-
sive highlight, including the potential winners and
losers of a bill, in a single query. The advantages
of identifying winners and losers will be detailed
shortly. We have assessed the quality and efficacy
of these AI-generated highlights in Appendix C.

Prompt: What are the detailed highlights, as well as the
potential winners and losers, of House Bill HB 5 titled
‘Prohibits Abortions After 15 Weeks’ in Florida?

Highlights (Full version in Appendix C.3)

1. Abortion Prohibition: The bill prohibits abor-
tions after 15 weeks of pregnancy, except in cases
where the mother’s life is at risk or if there are
lethal fetal anomalies.

2. Criminal Penalties: It imposes criminal penalties
on healthcare providers who perform abortions af-
ter 15 weeks, with potential charges ranging from
a third-degree felony to a first-degree felony,...

3. Informed Consent and Ultrasounds: The bill
requires healthcare providers to perform an ultra-
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sound and allow the pregnant person to view it
before performing an abortion. ...

4. Reporting Requirements: The bill imposes
additional reporting requirements on healthcare
providers who perform abortions, including report-
ing specified information to the state’s Agency for
Health Care Administration.

Potential Winners:

1. Pro-Life Advocates: Supporters of the bill argue
that it protects the rights and lives of unborn chil-
dren, and they view any limitation on abortion as
a step in the right direction.

2. Religious and Conservative Groups: ...

Potential Losers:

1. Abortion Rights Advocates: Those who support
a woman’s right to choose may oppose this bill, as
it limits access to abortions beyond the 15-week.

2. Healthcare Providers: ...

4.2 LLM Augmentation of Legislative Data
LLMs can help us further enhance the state data
quality by filling in the gaps in two scenarios: (1)
We apply GPT to enrich or augment the textual
features of entities. For example, some actors (e.g.,
bill sponsors) may have hidden agendas or motiva-
tions that are not clearly expressed in the bill or its
related documents. LLMs can assist by generating
more information, better exposing the background,
affiliations, and goals of these actors. (2) State-
level data is not flawless, and some entities may
lack certain attributes (e.g., the mission statement
of IGs). We use GPT to create synthetic informa-
tion for such entities. To achieve this data augmen-
tation, we have devised prompts, as follows:

Prompt: What are the highlights of the political inter-
ests of Legislator Scott Thomas Wilk in CA?

Scott Thomas Wilk is a Republican legislator from CA
who represents the 21st Senate District. Some of the
highlights of his political interests and priorities include:

1. Education: Wilk has been a strong advocate for
education and improving educational opportuni-
ties for Californians. He has expressed support
for increasing funding for K-12 schools, ensuring
access to quality higher education, and promoting
career and technical education.

2. Veteran Support: ....

3. Water and Natural Resources: ....

4. Fiscal Responsibility: Wilk emphasizes the need
for fiscal responsibility in the California state gov-
ernment. He supports reducing government waste,

lowering taxes, and promoting policies that en-
courage economic growth and job creation.

Prompt: What is the mission statement of Florida
Planned Parenthood PAC?

The mission statement of Florida Planned Parenthood
PAC is to protect, promote, and enhance reproductive
health care access and rights for all individuals in Florida.
They strive to elect candidates who support comprehen-
sive reproductive health care, including access to safe
and legal abortion, affordable birth control, and compre-
hensive sex education ....

4.3 Extracting Winner/Loser Relations
The third use-case of LLM in our study is to un-
cover hidden relations within the legislative process
across the US. Specifically, as part of generating
bill highlights, we utilize LLM to extract winner
and loser entities produced by the bill. These enti-
ties represent the groups or individuals that either
benefit from or are adversely affected by the bill’s
proposed policy. We depict them as nodes in the
legislative graph, along with a brief summary of
their interests (see Figure 2). Additionally, we es-
tablish links between these entities and relevant
bill actions using winner/loser relations. Our abla-
tion study demonstrates the value of these synthetic
relations (Section 7), enabling us to compare and
contrast bills across different US states, identifying
similarities and differences in their content and im-
pact. Furthermore, our LLM method outperforms
expert MTurk workers in the same annotation task
(Appendix C.2). Recent research (Davoodi et al.,
2022) relies on such human-based winner/loser
analysis of state bills, which is not scalable.

5 Data Collection

To realize and optimize the legislative graph, we
have built a scraper that can extract various data
on state legislation, legislators, interest groups, and
courage tests from different sources, particularly,
Vote Smart (VoteSmart, 2023). Specifically, we
have obtained 7K pieces of legislation covering the
period from 2019 to 2022. These bills have under-
gone 16.9K actions. We analyze the 9K main and
second floor actions (see Appendix A.1). VoteS-
mart does not include every legislation from every
state legislature; Rather, their research team tracks
topical legislation, as well as, unique and novel
legislation (i.e. legislation that addresses things
never previously addressed by any state legisla-
ture). Moreover, we have obtained different infor-
mation on 7237 legislators, including their biogra-
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Figure 3: Joint LLM and GNN embedding architecture
on nationwide legislative graph (Properties in Sec. 6.2)

phy, political party, religion, and etc. Furthermore,
we collected detailed information on 1421 Interest
Groups (IGs) including their textual attribute such
as mission. We have observed 61K ratings between
different pairs of legislators and IGs. Combining
the courage test results from all US states, we have
observed legislators answering 2216 unique ques-
tions. In total, 902 legislators participated in a test.
Overall, we have also LLM-extracted 300 entities
and 3K winner/loser relations after pruning single-
time used entities. As part of our future work, we
plan to use LLM to further scale the number of bills
in our dataset. For details on data collection and
processing, see Appendix B and the Ethics Section.

6 Classification Tasks & Architecture

Next, we explore three important political science
applications as relation prediction tasks on the leg-
islative graph (Figure 2). Our optimized legisla-
tive graph, utilizing generative LLM techniques,
already enhances model performance in these tasks
(as detailed in Section 7). To achieve further gains,
crucial in our problem domain (see the Ethics sec-
tion), we develop an efficient joint text and graph
(LLM + GNN) embedding architecture.

6.1 Political and Legislative Tasks on Graph
1. Roll-call (RC) Prediction. Our first task in-
volves predicting legislators’ votes on bill actions
and subsequently aggregating them to determine
the fate of each action. This is key to understand

the dynamics of state politics. It reveals what af-
fects legislative behavior, such as party, ideology,
voters, interest groups, etc. It also can inform the
public on the outcome and implications of state
legislation prior to voting.

2. Political Courage Test (PCT) Prediction.
It is crucial to know legislators’ answer to PCT
questions, which measure their risk-taking on con-
troversial issues. However, many legislators avoid
these tests (Appendix B.3). Thus, predicting their
answers can help to: (a) Know their true values,
goals, and actions. (b) Compare different legisla-
tors (e.g., in parties) and spot any agenda inconsis-
tencies. (c) Motivate legislators to take the test and
share their views, thereby gaining trust with voters.

3. Interest Group (IG) Impact Prediction. Our
final task is to predict the IG scores of legislators,
which is useful in at least two scenarios: (a) Interest
groups (IGs) can use these scores to identify allies
or opponents among newly elected legislators by
leveraging the broader context in the legislative
graph (e.g., winners/losers, courage tests). (b) The
public can estimate how IGs interact with their
legislators, especially when one or both parties are
new and the score has not yet been established.

Dependency. These three relation type predic-
tion tasks are interdependent and leverage the same
shared textual and graph contexts within the leg-
islative graph. For instance, the outcomes of the
PCT and IG scores can hint at the voting behaviors
of legislators (see Figure 1). Thus, we employ a
single architecture to address all these tasks.

6.2 Efficient Joint LLM and GNN Embedding

We predict these relation types with an efficient
joint text and graph architecture (Figure 3) that has
three novel aspects: (1) It handles longer legisla-
tive texts by using the latest non-generative LLM,
while exploiting our bill text highlighting system
(Section 7). (2) It better deals with unseen nodes
in the graph, by utilizing the LLM representation
of nodes (Ethics Section). (3) It jointly generates
and optimizes text and graph embedding, without
losing the textual context during in graph embed-
ding like previous methods (Feng et al., 2022; Mou
et al., 2021). Next, we explain our architecture
from bottom to up.

6.2.1 LLM-Based Text Embedding
Our architecture (Figure 3) leverages LLMs to pro-
duce textual representations of the nodes and rela-
tions in the legislative graph. Each node has some
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text associated with it, e.g., GPT bill highlight,
legislator’s political interest, and etc. We prepare
and feed this text to LLM to make and freeze a
textual embedding for each node. While we sup-
port different LLM providers (the Ethics Section),
we chose to use text-embedding-ada-002
from OpenAI. Ada can encode up to 8K tokens into
a 1538-dimensional vector and has a longer max se-
quence length than models such as RoBERTa (Liu
et al., 2019), thus enabling our architecture to fully
exploit GPT bill highlights.

6.2.2 LLM-Attributed Graph Embedding
We leverage the nationwide context/structure of
our graph by passing it through a popular hetero-
geneous GNN, RGCN (Schlichtkrull et al., 2018).
Our goal is to obtain effective graph embeddings
for nodes and relations, thereby enriching RGCN
training with LLM (OpenAI Ada in Figure 3). In
this approach, we extract the text embedding of
each node from OpenAI Ada and use it as the ini-
tial graph embedding in RGCN for boosting per-
formance. The RGCN model performs graph con-
volutions, allowing it to learn representations of
nodes within our legislative graph, which contains
multiple relations. Specifically, RGCN aggregates
and weighs input features from nodes and their
neighbors based on relation types. It then applies a
convolutional layer to refine these features, creat-
ing new representations. By repeating these steps
across layers, we achieve deeper and more expres-
sive node embeddings. RGCN effectively captures
the rich and complex information present in our the
legislative graph data using this formula:

h
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i = ReLU


W

(l)
0 h

(l)
i +

∑

r∈R
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W (l)
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Here, h(l)i is the hidden representation of node
i at layer l, W (l)

0 and W
(l)
r are learnable weight

matrices for layer l, R is the set of relation types,
N r

i is the set of neighbors of node i under relation
type r, and ci,r is a normalization constant.

6.2.3 Joint Text & Graph Optimization
We aim to retain the important linguistic and tex-
tual contexts of nodes, which can be lost through
RGCN layers. So we feed nodes’ LLM-based
(OpenAI Ada) text embedding through FFNN to
preserve it. Then, we join and optimize the text
and graph embedding of the node from RGCN
and FFNN. Finally, we predict the relation types,

e.g., (legislator, bill action), (legislator, PCT ques-
tion), and (IG, legislator). We use DistMult (Yang
et al., 2014), a factorization model that measures
the plausibility of a triple (entity1, relation, entity2)
by computing the dot product of their embeddings
with relation-specific weights. Here, our loss func-
tion consists of (a) cross-entropy loss of the relation
classification; (b) L2 regularization of the RGCN
weights; and (c) L2 regularization of the FFNN.

7 Experiments

This section assesses our framework’s core aspects:
the joint LLM and GNN embedding architecture’s
performance gains against strong baselines; the
benefits of normalizing and optimizing state-level
legislative data with a generative LLM; a perfor-
mance comparison over three legislative tasks;an
ablation study on integrating wider social and po-
litical context into the graph; and a performance
analysis using data splits that mimic real-world
legislative conditions.

7.1 Experimental Setup

Implementation. We used the Deep Graph Li-
brary (DGL, 2023) to build both our model and
baselines. OpenAI served as our LLM provider,
chosen for its efficiency (refer to our feasibility
study on open-source providers in Appendix C.4).
We used text-embedding-ada-002 for gen-
erating embeddings and GPT-3.5-turbo-16k
models1 for our legislative graph optimization. The
embedding dimension of Ada is 1536. Both the
FFNN and the RGCN (4-layer) models convert the
Ada embeddings into a 256-dimensional space. We
use Adam optimizer with a learning rate of 0.01.

Data Splits. To evaluate our model, we divide
the graph (formed over 50 US states) into train/eval
and test sets based on the bill nodes, using 80%
of them for training and validation. We select the
20% of the test nodes in three ways: (1) Randomly;
(2) By date, where we use bills after a certain date
for testing; and (3) By party, where test bills come
from either Blue or Red states (Appendix B). For
these splits, for each observed (positive) relation,
we generate a corresponding negative sample.

Metric. We choose Macro F1 over accuracy due
to imbalanced data in our prediction tasks.

7.2 Details of Baseline Models

We build and study three types of robust baselines:
1We wrote this paper before GPT 4 was available.

7410



Type Embedding Raw Graph LLM-Opt Graph
RC IG PCT RC IG PCT

Te
xt

BoW 59.8 59.3 58.4 62.8 64.2 61.9
RoBERTa 67.3 65.2 63.8 69.1 68.6 66.3

Ada 72.1 71.3 70.8 75.1 74.3 72.5

G
ra

ph

DeepWalk 63.3 61.8 61.3 65.7 63.6 62.2
GCN 65.2 63.7 62.4 66.5 64.2 63.8

RGCN 70.2 69 68.1 72.2 71.3 69.4

Jo
in

t Ada+ Txt.
RGCN

74.4 75.3 72.8 77.8 77.1 74.9

Table 1: Random split. Performance (Avg. Macro F1×
100 in 10 runs) of models with and without our LLM-
based legislative graph opt. in Roll-call (RC), Interest
Group (IG), and Political Courage Test (PCT) tasks.

1. Text models: We create text classifiers for each
task using a Random Forest on embeddings
from three models: (a) BoW utilizes the top
5K uni/bi-grams. (b) RoBERTa-Large, a small
language model (SLM). (c) Ada, the latest Ope-
nAI non-generative LLM. For the roll-call (RC)
task, we directly determine bill actions’ fate
by computing the embedding of (bill highlight,
sponsors), without vote aggregation. When pre-
dicting interest group (IG) scores, we calculate
the embedding of (legislator, IG). For predict-
ing courage test (PCT) responses, we generate
embedding of (legislator, PCT question).

2. Graph models: We train relation classi-
fiers with edge embeddings from: (a) Deep-
Walk (Perozzi et al., 2014), a model that ig-
nores relations and forms SkipGram on random
walk node sequences. (b) GCN, a standard 4-
layer GCN model with random node features.
(c) RGCN, the relational version of the GCN.

3. Joint models: In our ablation study (Sec-
tion 7.6), we examine weaker versions of our
joint text and graph model, limited to the
roll-call prediction task. Specifically: (a) EX-
IG excludes interest group (IG) relations
and nodes. (b) EX-PCT omits the courage
test contexts. (c) EX-WL removes the win-
ner/loser (WL) relations and nodes.

7.3 Benefit of Joint Text and Graph Model
To understand the benefit of our joint LLM and
GNN model in isolation, we first disable our gen-
erative LLM-based optimization on the legislative
graph for all the models. We look at the roll-call
task results in Table 1 for the random split on the
raw graph and notice the following: (1) Compar-
ing the text-based models, Ada (LLM) achieves

4.8 points higher F1 than RoBERTa (SLM). This
is because Ada is trained on a larger text corpus
and is speculated to have 7.63× more parameters.
More importantly, Ada handles longer legislative
texts (i.e., researcher-written bill highlight) by hav-
ing 16× larger max sequence length (both having
similar embedding size, 1024 for Roberta and 1536
for Ada). (2) Among the graph models, RGCN
better captures different relation types in the graph,
thus delivering higher performance compared to
GCN/DeepWalk that are relation agnostic models.
(3) Our joint model outperforms the leading indi-
vidual text or graph models by 2.3 and 4.2 points,
respectively. It effectively maintains the textual
and relational contexts of policy-making in the leg-
islative process, thereby merging the strengths of
the individual models.

7.4 Effect of LLM-Based Graph Optimization

Next, we activate our generative LLM-based op-
timization on the legislative graph and revisit the
roll-call task as shown in Table 1. We observe
that: (1) Our optimization improves all baseline
models and our own, owing to the normalization
of legislative language across US states. (2) The
optimization has a reduced impact on RoBERTa
compared to Ada. RoBERTa is further hindered
by its shorter max sequence length, which limits
its ability to utilize the GPT-generated highlights
that are, on average, longer than those authored by
the researchers in the previous experiment. Con-
versely, the Ada model sees a 3-point increase in
F1 score, due to its advanced features, including
a larger number of parameters, enhanced training
data, etc. (3) Baseline graph models fail to con-
sider the textual attributes of nodes improved by
our optimization, leading to only a modest enhance-
ment derived from the winner/loser relationships
identified by GPT. (4) Our joint text and graph
model continues to surpass other models in this
task, achieving an F1 score of 77.8.

7.5 Analysis of PCT and IG Score Prediction

Next, we focus on the performance of the other
two tasks presented in Table 1. For all models, re-
gardless of the inclusion of our LLM-based graph
optimization, we observe that predicting legisla-
tors’ responses to a political courage test (PCT) is
more challenging than predicting their scores for
a certain IG. These PCT questions require legis-
lators to declare their positions on divisive issues
during state elections. At times, they address very
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specific issues, for which the legislative graph may
not provide adequate context (e.g., related bills and
votes). This lack of context poses a challenge to
the models’ learning capabilities and their ability
to make accurate predictions. However, IGs have
broader agendas (e.g., see the IG mission statement
in Section 3). As a result, all models show im-
proved performance on this task, benefiting from a
more comprehensive contextual information.

Joint Model Variations
BEST EX-IG EX-PCT EX-WL

Avg. Macro F1 77.8 75.7 76.2 76.3
Table 2: Weaker versions of the joint model (random
split). Ablation study on the impact of different contex-
tual information in the LLM optimized legislative graph.

7.6 Ablation Study on Legislative Graph

Our legislative graph abstraction, which incorpo-
rates various social and political contexts, enhances
the understanding of the state-level legislative pro-
cess. These contexts improve both baseline and
joint models across the three prediction tasks. Here,
we detail how each component affects the F1 score
in the roll-call task (Table 2). In our joint model
with the LLM-optimized graph (F1 of 77.8, Ta-
ble 1), removing IG relations (EX-IG) decreases
the F1 score by 2.1 points, while excluding courage
test relations (EX-PCT) and winner/loser relations
(EX-WL) reduces it by 1.6 and 1.5 points, respec-
tively. Removing multiple contexts simultaneously
can diminish the advantages of our joint model over
the best text model (Ada). Overall, the text models
are unaffected by the exclusion of these contexts,
except when utilizing the textual winner/loser infor-
mation in the GPT bill highlights. To preserve the
joint model’s superiority, adjusting our loss func-
tion has proven effective. We can apply weights to
the graph and text components’ losses in our model
to rely more on the textual embeddings. Note that
the baseline graph model (RGCN) experiences a
comparable performance drop when different con-
textual information is excluded.

7.7 Impact of Party- and Time-based Splits

Finally, we compare different models with the time
and party split over the LLM-optimized graph.
Here we present the results for the best model in
each category (shown in Table 3) and make some
observations: (1) All models show a lower F1 score
when they face a more realistic situation that may
include significantly higher unseen nodes—not ob-
served in training data, e.g., newly elected legisla-

Type Embedding Time Party
(Blue)

Party
(Red)

Text Ada 72.1 73.7 74.2
Graph RGCN 68.5 69.2 70
Joint Ada+ Txt. RGCN 74.8 75.8 76.5

Table 3: Time and party-based graph splits. Perfor-
mance (Avg. Macro F1× 100 in 10 runs) of best models
in each category for the Roll-call task when LLM-based
legislative graph optimization is enabled.

tors. (2) The time-based split gave us more unseen
nodes, which leads to more performance loss. (3)
In the party-based splits, we had more Red states
than Blue states in our training data (in both set-
tings), so we observed a slightly higher F1 score
when the test bills are from Red states. (4) Gener-
ally, the baseline graph model (RGCN) performs
significantly worse than the text models. This is
attributed to its default method of managing and
approximating the embeddings of unseen nodes,
which is suboptimal and involves combining the
embeddings of potential neighboring nodes based
on relational weights. Our joint model handles un-
seen nodes better thanks to our LLM-based entity
alignment (Ethics Section), thereby outperforming
both the graph and text baselines.

8 Summary

In this paper, we introduce an efficient framework
for analyzing the state-level legislative process.
This framework interconnects legislative activities
across U.S. states by creating a national network
that includes often-overlooked elements such as
interest groups and political stances. Moreover, it
is the first to tackle the linguistic complexities of
state legislative data by utilizing generative LLMs
to normalize, summarize, and enhance this informa-
tion for improved policy analysis. In addition, we
develop a legislative graph abstraction and define
several key prediction tasks concerning the interac-
tions between legislators, bills, and interest groups.
We design an effective joint LLM and GNN archi-
tecture to handle these tasks, which is built to ac-
commodate unseen nodes and support longer texts,
thus further leveraging the enhanced linguistic and
network contexts. The next section discusses frame-
work limitations and ethical aspects.
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Limitations and Ethical Considerations

One of the main challenges of our work is to an-
alyze state legislation in a responsible and ethical
way. We are aware that the outcomes of our re-
search and the applications of our models can have
significant impacts on how people perceive and
evaluate government policies on crucial issues such
as health and education. Thus, we want to address
limitations and ethical aspects of our work, both in
terms of the data we use and the model we develop:

A. Model-Specific Challenges & Considerations

Scaling training and inference:. We aim to im-
prove the inference speed of our joint LLM and
GNN model (Yang et al., 2020), which is heavier
than a pure LLM or GNN approach. To achieve
this, we will explore different techniques, such
as graph knowledge distillation (KD), to transfer
knowledge from a large and complex teacher model
to a smaller and simpler student model. Moreover,
we will use more efficient distributed training plat-
forms, such as DeepSpeed (Microsoft, 2023a), of-
fering lower memory and bandwidth requirements
than DGL, while maintaining the accuracy and con-
vergence of the original models.

Choice of specific LLM and GNN: Our joint
text and graph architecture supports various LLM
and GNN providers. We chose OpenAI GPT/Ada
and RGCN as our LLM and GNN models, respec-
tively, due to their popularity and performance.
This allowed us to stay focused on our contribu-
tions, e.g., the benefits of optimizing legislative
graph data using generative LLMs; and handling
key political science tasks using our shared LLM
and GNN architecture. For the latter, we compared
our approach with the solo LLM models, which
are unable to prioritize key contexts and players in
the legislative process, and the solo GNN models,
which miss out on crucial linguistic dependencies
and information. In Appendix C.4, we explore the
possibility of using open-source models, e.g., Phi-2
and Llama-2, in our framework.

Improving handling of unseen entities. RGCN
uses neighbor estimation and inductive inference to
handle unseen nodes. To realize that in our frame-
work, initially, we established neighborhood re-
lations for unseen nodes by performing heuristic
exact matches on their textual attributes (e.g., party
of legislators). Later, we improved this by devising
an LLM-based entity alignment algorithm. To de-
termine neighbors of an unseen node, we sample a

finite set of nodes of the same type in the same US
state. Then, we compute cosine similarity over the
node’s LLM (Ada) text embedding and that of other
nodes in the graph. This gives our text-attributed
RGCN a very effective set of neighbors to generate
the graph embedding of each unseen node based
on that of its neighbors. Injecting the unseen nodes
in the train graph and further fine-tuning the model
could be a future improvement.

B. Data-Specific Limitations & Considerations
Select bill actions. In this study, we have focused
on “floor vote” or “roll call vote” that is a vote
taken by the full membership of either chamber of
the state legislature on a bill that has been debated
on the floor. Our framework supports other bill ac-
tions, detailed in Appendix A.1, e.g., Introduction,
Committee Review, Governor’s Action.

Handling abstain votes. We did not consider ab-
stain votes (marked as absent or N/A) in our study.
While our proposed model can handle them, we
did not study them as they are very rare. We think
predicting abstain votes is an interesting problem
that deserves further exploration in future work.

Data source licensing and bias. In our study,
we have gathered state-level legislative data pri-
marily from Vote Smart (VoteSmart, 2023). As
a non-profit organization, Vote Smart offers free,
trustworthy, and unbiased info. about U.S. politi-
cal figures. They analyze public data from diverse
sources, including legislative votes, campaign fund-
ing reports, public speeches, interest group ratings,
and personal backgrounds. Additionally, VoteS-
mart actively promotes API usage and supports 3rd
party development to empower civic engagement
and informed decision-making during elections.

Data Leakage and copy-cat bills. Copycat bills
are model bills that are replicated across states, of-
ten by interest and lobbying groups (ALEC, 2023).
These bills present an intriguing challenge for po-
litical science research. However, we believe that
they did not significantly impact our study and
results. Our dataset, based on Vote Smart, only
includes topical and novel legislation, excluding
copycat bills (Section 5). Even if such bills were
present in our dataset, our evaluation remains fair
and consistent, as all models utilize the same data.
Looking ahead, we aim to extend our architec-
ture to identify and classify copycat bills as a new
task. Achieving this would require either automatic
(LLM) or human annotation of state bills.
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A Appendix: State Legislative Process

In this appendix, we provide a more detailed dis-
cussion on the state-level legislative process and its
importance.

A.1 Background

In this paper, we focused on “floor vote” or “roll
call vote”, as explained in the Ethics section. A
state bill is a proposed law that must go through
several stages in both houses of the legislature be-
fore becoming a law. The process is similar for
the House (upper chamber) and the Senate (lower
chamber), but with some variations. The main
stages are: (1) Introduction: A legislator proposes
a bill and gives it to the clerk of their respective
house. The bill gets a number, a title, and a com-
mittee. (2) Committee Review: The committee re-
views the bill and decides whether to support it, op-
pose it, or make changes to it. The committee can
also ignore the bill and let it die. (3) Floor action:
The house votes on the bill after debating and
amending it. The bill needs a majority vote to pass
and go to the other house. (4) Second floor action:
The second house repeats the same steps as the first
house. If the second house agrees with the first
house, the bill goes to the governor. If the second
house disagrees with the first house, they can try
to reach a compromise through a conference com-
mittee. (5) Governor’s action: The governor can
sign the bill into law, veto it, or do nothing. The
legislature can override the governor’s veto with a
two-thirds vote in both houses.

A.2 National Impact of State Legislation

The impact of state bills and laws is not limited to
the state level. They also influence national matters,
as federal courts often respect the states’ decisions
on constitutional questions (see examples of the
federal abstention doctrine in Table 4). Moreover,
some state laws have inspired or provoked the en-
actment of federal laws (See examples in Table 5).

B Appendix: Data & Experimental
Details

Here, we include more details about our dataset as
well as experiments:

B.1 Categorizing States: Red, Purple, Blue

In Section 7, we categorized each U.S. state as red,
purple, or blue. However, there is no definitive or
official way to classify states as red, purple, or blue

1 In Sprint Communications, Inc. v. Jacobs (2013),
the Supreme Court said that federal courts should
not hear a case about a state agency’s regulation of
telecom rates, as the state had a specific process for
reviewing and appealing such issues.

2 In Google LLC v. Oracle America, Inc. (2021), the
Supreme Court did not review a state court decision
that said that Google’s use of Oracle’s software code
was fair use under federal copyright law, because the
state court followed federal law correctly and there
was no disagreement with other federal rulings.

Table 4: Examples of the abstention doctrine, a prin-
ciple that guides federal courts to avoid deciding con-
stitutional issues if there is a state law issue that could
resolve the case.

1 The state of California passed a legislation in 2018
that mandated ISPs to not discriminate any web traf-
fic based on its origin or content. This legislation was
a response to the FCC’s decision to revoke net neu-
trality, which had ensured equal access to the internet
for all users. The California legislation inspired other
states to propose similar laws, and also triggered a
discussion in Congress about whether to reinstate net
neutrality at the national level.

2 Several states have legalized the use of marijuana
for recreational purposes by adults since 2012, when
Colorado and Washington became the first ones to do
so. This has created a contrast with the federal ban
on cannabis, and has increased the demand for the
federal government to change its drug policy. The
legal marijuana industry also poses challenges and
opportunities for regulation, public health and safety,
and states’ rights.

Table 5: Some examples of how state bills have inspired
or influenced the enactment of federal laws.

based on solely their state legislatures. Different
sources may use different criteria or thresholds to
determine the color of a state. For example, some
sources may consider a state purple if it has a di-
vided government, meaning the governor and at
least one chamber of the state legislature belong
to different parties. Other sources consider a state
purple if it has a close partisan balance in both
chambers of the state legislature, meaning neither
party has a large majority. We adopt the defini-
tion of partisan lean proposed by (FiveThirtyEight,
2023). This metric represents the average margin
difference between a state’s voting pattern and the
national average in congressional and gubernatorial
elections. It incorporates data from both presiden-
tial and state-legislative election results:

• Red states: States with a partisan lean of
R+10 or more
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• Blue states: States with a partisan lean of
D+10 or more.

• Purple states: States with a partisan lean be-
tween R+10 and D+10.

Using this method, here is the list of red, purple,
and blue state. As can be seen from the list, there
are more red states than blue or purple states:

• Red states (22): Alabama, Alaska, Arkansas,
Idaho, Indiana, Kansas, Kentucky, Louisiana,
Mississippi, Missouri, Montana, Nebraska,
North Dakota, Ohio, Oklahoma, South Car-
olina, South Dakota, Tennessee, Texas, Utah,
West Virginia, Wyoming.

• Blue states (13): California, Connecticut,
Delaware, Hawaii, Illinois, Maryland, Mas-
sachusetts, New Jersey, New York, Oregon,
Rhode Island, Vermont, Washington.

• Purple states (15): Arizona, Colorado,
Florida, Georgia, Iowa, Maine, Michigan,
Minnesota, Nevada, New Hampshire, North
Carolina, Pennsylvania, New Mexico, Vir-
ginia, Wisconsin.

B.2 Calculating Interest Group (IG) Scores
We explained how our model benefits from and
uses the interest group (IG) scores of legislators
in Sections 3 and 6. Here, we provide additional
details on how these IG scores are calculated and
processed by Vote Smart. These scores are often
publicized by interest groups (IGs) in an attempt
to influence the future behavior of legislators. The
IG scores we collected from Vote Smart are repre-
sented as percentages ranging from 0 to 100. There
are several ways in which these scores are adjusted
by Vote Smart

• The vast majority of the interest groups use
a 0-100 system for rating candidates, so Vote
Smart simply consumes the rating already pro-
vided to it.

• Some interest groups provide a list of recent
legislation that the interest group was for and
against and show how each legislator voted
on that legislation. Vote Smart easily takes
this data and calculates a percentage that rep-
resents how often a legislator voted in favor of
the interest group’s legislative position (most
interest groups that actually list a 0-100 score
do so through this exact method).

• Some interest groups use letter grades to rate
candidates. If this is the case Vote Smart uses
a basic linear equation to turn these grades
into numbers on a 0-100 scale. Vote Smart
assigns the lowest possible letter grade a score
of “0”, the highest possible grade a score
of “100”, and then use an equation to assign
scores for all other possible grades the candi-
date could receive.

• Some interest groups have other ways of rat-
ing candidates. Vote Smart studies any such
rating system carefully and try to develop a
fair way to turn the rating into a number on a
0-100 scale. If there is no fair or accurate way
to translate the rating to a 0-100 grade, Vote
Smart simply does not post it.

B.3 Details of Political Courage Tests (PCT)

In Section 5, we provided an overview of the Polit-
ical Courage Tests (PCTs) data that we have gath-
ered. Here, we delve into more details on how these
tests have evolved over time and why we should
infer legislators’ response to them (Section 6). The
PCT asks state candidates who want to be elected
to answer questions about different topics that will
be crucial in the upcoming term. The test is made
with the help of more than 200 experts from dif-
ferent fields and political views. The test answers
are shown on Vote Smart’s website, helping voters
learn more about their options. The test also en-
courages candidates be honest and responsible for
their views. Overall, these tests are optional and
usually available during elections. If candidates
take them, their answers are shared with the public.
Also, the questions in the PCT could be slightly
different across states and election years.

Predicting legislators’ responses to these tests
are crucial, as the number of candidates who take
the PCT has gone down, from 72% in 1996 to 48%
in 2008 and to 20% in 2016 (WashingtonMonthly,
2023). The reason is that candidates from both
parties are scared that their rivals will use their an-
swers to attack them in ads. Rep. Anne Gannon, a
Democratic leader in the Florida House of Repre-
sentatives, said: “We tell our candidates not to do
it. It sets them up for a hit piece.”. To change this,
Vote Smart has tried to make motivate candidates
to take the test, and allows them to skip up to 30%
of the questions (Journal, 2023). Note that If a can-
didate does not select a response to any part or all
of any question, it does not necessarily indicate that
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the candidate is opposed to that particular item.

B.4 Evaluation Details: Need for Normalizing
Language of State Bills

State legislative texts often exhibit inconsistent, ver-
bose, and complex language (Sections 1, 3). Here,
we present an experiment to underscore the neces-
sity of normalizing the text and language used in
these bills. To achieve this, we employed a text
embedding and classification architecture (The text
model based on Roberta, as discussed in Section 7).
Next, we compared various ways of representing
state legislation: Official title, Official synopsis,
and Bill highlights crafted by a centralized team of
political science researchers from Vote Smart. The
latter option ensures a consistent language across
all bills, regardless of the legislator responsible
for drafting them. We then applied our study to
two classification tasks: (1) Predicting roll-call
outcomes (pass/fail); (2) Identifying sharp splits
in votes based on the ideological or demographic
orientation of legislators, as in (Davoodi et al.,
2020). Our results revealed that bill highlights
significantly enhance the performance of both clas-
sification tasks when compared to using the official
titles and synopses. We observed a rather signif-
icant improvement of up to 3.5 points in the F1
score.

C Appendix: Additional Evaluation and
Experiments

In this appendix, we detail some additional evalua-
tion on our framework:

C.1 Evaluation of LLM-Generated Bill
Highlights

We also conducted a brief study on the problem
of hallucination. Specifically, We investigated the
impact of applying LLM-based optimization to tex-
tual information within our legislative graph. Our
focus centered on cases where GPT-generated bill
highlights contained factually incorrect or unsup-
ported information. In the Ethics section, we dis-
cussed the potential risks associated with these
phenomena. To evaluate the accuracy of GPT-
generated highlights, we conducted a small-scale
measurement. We randomly sampled 150 bills and
compared the GPT highlights against two ground-
truth sources: (1) Highlights written by the Vote
Smart researchers; and (2) The full text of the bills.
During this evaluation, two annotators assessed the

factual correctness of the GPT highlights, without
considering informativeness, coherence, or fluency.
In 95% of the sampled bills (based on the major-
ity vote), we discovered that GPT-generated high-
lights were accurate—sometimes even surpassing
researcher-written highlights.This finding is further
supported by the F1 performance results of our
classification tasks (such as roll-call prediction) be-
fore and after enabling GPT-based optimization on
the legislative graph (Section 7). As part of our
future work, we aim to better understand any po-
tential biases introduced by GPT-based summaries
into our system. We plan to explore more sensitive
classification tasks, including predicting gender-
charged voting splits (Davoodi et al., 2020). Addi-
tionally, we are considering using MTurk to com-
pare LLM-generated highlights with those written
by experts for select bills (Similar to our study in
Appendix C.2). It’s worth noting that atomic evalu-
ation metrics such as ROUGE and BLEU are not
sufficient, as they focus solely on simple n-gram-
based matches between the generated summary and
the ground truth.

C.2 Evaluation on LLM-based Winner/loser
Extraction

In Section 7, we conducted an ablation study on
the effect of each additional context within our
graph. We showed that adding GPT-generated win-
ners/losers from bill texts to the graph improves
our roll-call prediction performance. Here, we use
the crowd-sourcing technique, similar to (Davoodi
et al., 2022), to further study the effectiveness of
our approach:

Questions/Tasks
How many female justices are currently on the US
Supreme Court?
Which party currently holds the majority of seats in
the US Senate?
What is the main topic of the following bill? Pre-
vention and control of, emergency and involuntary
commitment for, and treatment programs and ser-
vices for drug dependence.
Select the entities that would lose benefits from this
bill? Requires Oregon Health Authority to commis-
sion independent study of costs and impacts of op-
erating basic health program in Oregon. Specifies
parameters of study. Requires a report to Legisla-
tive Assembly by November 30, 2014. Appropriates
money from General Fund to authority for contract
costs to conduct study. Declares emergency, effective
on passage.

Table 6: Sample questions from our Political Science
qualification test.
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Setup and results. We conducted a comparison
between the LLM-extracted results and human an-
notations. We used MTurk to identify the stakehold-
ers who would gain or lose from the bills’ policy,
regardless of its legislative outcome. Since annotat-
ing state bills was difficult for typical MTurk work-
ers, we created a Political Science Qualification
test with different tasks (e.g., Sentiment analysis,
winner/loser extraction, political knowledge). Ta-
ble 6 provides an overview of some of the tasks.
Then, we selected annotators (mostly US-based)
who passed the test with 80% accuracy and added
them to our pool. The test had a 30-minute time
limit and no retries. We assigned 3 annotators from
our pool to each bill highlight (ground-truth Vote
Smart) and asked them to assess the impact of bill
policies on the stakeholders (the list of stakeholder
for each bill was extracted from our LLM analy-
sis). Then, we determined the winners and losers
of each bill based on the majority of annotators’
choices. If there was still no consensus, we break
the tie randomly. Finally, we compared the human-
based annotation results from MTurk with those
from GPT for 150 bills. In 40% instances where
there were differences, we found out that the LLM
results were accurate 85% of the time. This further
confirmed our method is more accurate and less
expensive than human annotation.

C.3 Example of GPT-Generated Bill
Highlights

Table 8 shows a sample state bill that were summa-
rized by the GPT 3.5 model.

C.4 Open Source Models: A Case Study of
Phi-2 and Llama-2

We built our framework using closed-source Ope-
nAI LLMs (Ada and GPT 3.5), but it can work
with any language model that satisfies our perfor-
mance and reliability criteria. We also explored
the possibility of using open source models in our
framework (e.g., to reduce the inference cost). We
specifically selected the 3.7B parameter Phi-2 (Mi-
crosoft, 2023b) from Microsoft and the 7B parame-
ter Llama-2 from Meta as potential alternatives.

Choice of models. These models have much
fewer parameters (by an order of magnitude) than
the GPT 3.5 model that we used in our study, but
they have demonstrated remarkable performance
in particular benchmarks. According to Microsoft:
“Phi-2 outperforms LLMs such as the 7B Mistral,
13B Llama-2, and even the 70B Llama-2 on some

Open Source
LLMs

% of summarized test bills
0 2 4 8

Llama-2 (13B) 77.8 77.6 75.4 72.1
Phi-2 (2.7B) 77.8 76.2 74.3 70.4

Table 7: Impact on the F1 performance when incorpo-
rating open-source models into our framework during
inference for bill highlight generation. Our joint text
and graph model was trained using the random split
and for the roll-call (RC) task in Table 1.

benchmarks. It also matches or surpasses the per-
formance of Google Gemini Nano 2, which is
larger in size. The benchmarks include various
tasks such as reasoning, language comprehension,
mathematics, coding challenges, and more.”.

Implementation details. We used LM Stu-
dio (studio, 2024) to run these open source models
with minimal code modification in our framework.
LM studio is a solution designed for running and ex-
perimenting with different LLMs locally. We opted
for LM Studio due to its chat interface, OpenAI-
compatible local web server, and seamless integra-
tion with HuggingFace models. We communicate
with LM Studio by sending HTTP requests to its
OpenAI compatible API endpoint locally.

Experimental setup. We present a limited ex-
periment to investigate the feasibility and perfor-
mance of these models. Due to some challenges
that we will explain shortly, we did not train our
joint text and graph architecture with these lan-
guage models; Instead, we use them at the infer-
ence stage for generating bill highlights (but not for
augmenting the other data in the legislative graph
in Section 4). Specifically, we retrieve our model
checkpoint trained for roll-call task (Table 1). Then,
for a small fraction of bills in the test dataset, we
tasked Phi-2/ LLama-2 with creating bill highlights.
We continue to rely on GPT for the remaining bills
and all legislators during the roll-call inference, In
essence, bill highlights can be generated using var-
ious methods during inference, including manual
human annotation. Our underlying OpenAI Ada
and RGCN model continue to generate the embed-
dings and model score in the roll-call prediction
task. Finally, we evaluate our joint model’s perfor-
mance using the average F1 score.

Analysis. The open source models Phi-2
and Llama-2 exhibit declining F1 scores based
on the increasing proportion of test bills they
summarize, as indicated in Table 7. Our observa-
tions highlight a decline in the F1 performance
when we utilize them, even if only partially,
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for summarizing a small subset of bills. Upon
analyzing the bill highlights generated by these
models (through random sampling, similar to our
analysis in Appendix C.1), we identified three
primary issues impacting the classification per-
formance: (1) Incomplete capture of highlights:
These models occasionally fail to capture the
essential aspects of bills, resulting in superficial
or empty highlights. For instance, in Table 9
and Table 10, both Phi-2 and Llama-2 produced
inadequate highlights for an abortion bill when
compared to GPT and our ground-truth (Table 8).
(2) Incorrect or overly detailed winners/losers:
Another problem arises when these models
generate lists of potential winners or losers
associated with bills. We observed a highly
detailed and exaggerated list of winners/losers
in some cases. In the case of the abortion
bill, Llama-2 included unborn children as
winners. This issue impacts the underlying
efficiency in generating embeddings for these bills.
(3) Factual errors and lack of frequent updates:
More importantly, these models struggle with sum-
marizing newer bills, potentially due to infrequent
updates or limited training data. Consequently,
their summaries may contain factual errors (such
as incorrect dates) or irrelevant information (fake
highlights not mentioned in the bill). Consider the
case of state bill LD51 titled “An Act To Enact
the Maine Insurance Data Security Act” in Maine
during 2021. Phi-2 failed to identify any winners
or losers for this bill. More importantly, it made
a year-related mistake in its summary. Llama-2
inaccurately asserted that insurers were required to
notify the Maine Office of the Attorney General
(OAG), within 72 hours of detecting a security
breach involving sensitive information. However,
this requirement was absent from the actual full
text of the bill. Notably, GPT did not make any
error when summarizing the same bill.

Readiness. While these two open-source mod-
els could indeed serve as viable alternatives to the
OpenAI GPT model in various problem domains,
their performance remains uncertain for our politi-
cal science problem. Factual error in summarizing
bills could significantly impact the public or legisla-
tive bodies. Currently, using them for training or
scaling up during inference would undermine the
purpose of bill summarization in our work, com-
pared to using the official abstract. As part of our
future work, we intend to explore even larger open-
source models, such as the 70B Llama-2, to over-

come these limitations. Additionally, we plan to
evaluate the efficiency of these open-source models
as an alternative to OpenAI Ada for embedding.

D Appendix: Further Discussion on
Related Work

In Sections 1 and 2, we discussed the most recent
NLP/ML studies that have developed promising
methodologies allowing vast amounts of legislative
text to be analyzed and incorporated into models of
legislative behavior. However, they have some key
limitations: most focus on the centralized federal-
level process, miss out on some state-level contex-
tual information (e.g., the influence of local lobby-
ists), use low-quality and inconsistent state data,
have limited support for non-vote prediction tasks,
or often rely on traditional NLP/ML architectures.
In this section, we delve into additional works that
were not fully covered in our related work section 2
due to space limitations.

Incorporating social network contexts. Some
recent studies at the congressional level have inte-
grated social context and valuable expert knowl-
edge in the roll-call prediction task. Feng et al.
2022 builds a heterogeneous information network
for Congress legislators based on their social net-
work info (Wikipedia information) and expert
knowledge (two political think tanks). It uses an
RGCN network to embed this network and pre-
dict votes. Mou et al. 2021 creates a similar net-
work to predict the voting behavior of Congress
legislators using their public statements on Twit-
ter. Mou et al. 2023 employs the same dataset
but develops a Pretrained Language Model (PLM)
based on legislator’s profile (e.g., ideology) and
behavior (e.g., voting pattern) to examine different
political science tasks (e.g., roll-call prediction).
In addition, Spell et al. 2020 develops an embed-
ding model that predicts the frequency and sen-
timent of congress legislator tweets based on the
text of Trump’s tweets. It claims that ideal points
estimated from votes do not capture this aspect of
political preferences for members of Congress. Pu-
jari and Goldwasser 2021 create a joint embedding
model for politicians, twitter posts and event infor-
mation to predict legislators’ interest group grades
based on their votes. Roy et al. 2021 use both text
and twitter network information to predict moral
stances by politicians using a neuro-symbolic mod-
eling approach (Pacheco and Goldwasser, 2021)

We use political courage tests to measure the
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Title Prohibits Abortions After 15 Weeks
Synopsis A vote to pass a bill that prohibits abortions after 15 weeks with

no exceptions for rape, incest, or human trafficking.
VoteSmart

• Prohibits a physician from performing an abortion for indi-
vidual if they determine that the gestational age of the fetus
is more than 15 weeks, without exceptions for rape, incest,
or human trafficking (Sec. 4).

• Requires the director of any medical facility in which abor-
tions are performed to submit a monthly report each month
to the state legisalture documenting the medical and surgical
procedures done including the number of abortions (Sec. 5).

• Specifies that this act shall take effect July 1, 2022 (Sec. 8).

GPT House Bill HB 5, titled "Prohibits Abortions After 15 Weeks in
FL," aims to restrict access to abortions in the state of Florida by
prohibiting the procedure after 15 weeks of pregnancy. Here are
some detailed highlights of the bill, as well as potential winners
and losers:
Highlights:

1. Abortion Prohibition: The bill prohibits abortions after 15
weeks of pregnancy, except in cases where the mother’s life
is at risk or if there are lethal fetal anomalies.

2. Criminal Penalties: It imposes criminal penalties on health-
care providers who perform abortions after 15 weeks, with
potential charges ranging from a third-degree felony to a first-
degree felony, depending on the circumstances.

3. Informed Consent and Ultrasounds: The bill requires
healthcare providers to perform an ultrasound and allow the
pregnant person to view it before performing an abortion.
They must also provide certain information to the patient
about the ultrasound images.

4. Reporting Requirements: The bill imposes additional re-
porting requirements on healthcare providers who perform
abortions, including reporting specified information to the
state’s Agency for Health Care Administration.

Potential Winners:

1. Pro-Life Advocates: Supporters of the bill argue that it
protects the rights and lives of unborn children, and they view
any limitation on abortion as a step in the right direction.

2. Religious and Conservative Groups: The bill aligns with
the beliefs and values of religious and conservative groups
that oppose abortion.

Potential Losers:

1. Abortion Rights Advocates: Those who support a woman’s
right to choose may oppose this bill, as it limits access to
abortions beyond the 15-week mark.

2. Healthcare Providers: The bill puts healthcare providers in
a difficult position by potentially subjecting them to criminal
charges if they perform abortions after 15 weeks, even in
cases where the pregnant person’s health is at risk.

Table 8: Abortion Bill: Comparing bill title, synopsis,
researcher-written highlights and GPT-generated high-
lights.

Title Prohibits Abortions After 15 Weeks
Synopsis A vote to pass a bill that prohibits abortions after 15 weeks with

no exceptions for rape, incest, or human trafficking.
Phi-2 House Bill HB 5, titled "Vote to pass a bill that prohibits abortions

after 15 weeks with no exceptions for rape, incest, or human
trafficking," aims to restrict access to abortion in Florida. Here are
the detailed highlights of the bill and potential winners and losers:
Highlights:

1. Prohibits abortions after 15 weeks of pregnancy, with no
exceptions for rape, incest, or human trafficking

Potential Winners:

1. Pro-life advocates: The passage of this bill is a victory for
pro-life advocates who are passionate about protecting the
rights of unborn babies. It reflects their efforts to restrict
access to abortion and promote the value of human life from
conception until birth.

2. Parental rights: This bill supports parental rights by allow-
ing parents or guardians to be notified before an abortion is
performed on a minor, ensuring that they have the opportunity
to make informed decisions about their child’s healthcare.

Potential Losers:

1. Women seeking abortions: The passage of this bill limits
access to safe and legal abortion for women who are 15 weeks
pregnant. It may force them to carry a pregnancy to term or
seek unsafe alternatives if they cannot travel out of state.

2. Healthcare providers: This bill places additional restrictions
on healthcare providers, requiring them to adhere to specific
guidelines when performing abortions after 15 weeks. This
may impact their ability to provide comprehensive and timely
care to patients.

3. Rape and incest victims: The bill does not make any excep-
tions for victims of rape or incest, which can have serious
implications for those who are already vulnerable.

4. Human trafficking victims: Similarly, the bill’s lack of
exceptions for rape and incest can have serious implications
for members of the LGBTQ+ community, who may be more
likely to experience sexual violence and its aftermath.

5. Low-income individuals and families: The bill’s restric-
tions on abortion access may disproportionately impact low-
income individuals and families, who may have limited ac-
cess to healthcare resources and support.

Overall, the passage of House Bill HB 5 has significant implica-
tions for reproductive rights in Florida, and highlights the ongoing
debate around access to safe and legal abortion in the United
States.

Table 9: Abortion Bill: Phi-2 generated bill highlights.
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Title Prohibits Abortions After 15 Weeks
Synopsis A vote to pass a bill that prohibits abortions after 15 weeks with

no exceptions for rape, incest, or human trafficking.
Llama-2 House Bill HB 5, also known as the "Pro-Life Act," aims to

prohibit abortions after 15 weeks of gestation in Florida. Here are
some potential winners and losers of this bill:
Highlights:

1. N/A

Potential Winners:

1. Anti-abortion groups: The bill would greatly restrict ac-
cess to abortion, which is a fundamental right guaranteed
by the US Constitution. This would be a huge victory for
anti-abortion groups, who have long sought to limit or ban
abortion in Florida and across the country.

2. Unborn children: By prohibiting abortions after 15 weeks,
the bill would save the lives of thousands of unborn children
who might have been terminated through abortion. This could
be seen as a moral victory for those who believe that every
life is precious and should be protected.

3. Pro-Life lawmakers: The passage of HB 5 would be a major
achievement for pro-life lawmakers in Florida, who have
been working tirelessly to restrict abortion access. It would
demonstrate their commitment to protecting the unborn and
upholding their pro-life beliefs.

4. Religious groups: Many religious groups, particularly those
with strong anti-abortion stances, would likely view the pas-
sage of HB 5 as a moral victory. They might see it as a way
to uphold their religious beliefs and values, which may prior-
itize the protection of human life.

Potential Losers:

1. Women’s rights groups: The passage of HB 5 would be a
significant blow to women’s rights groups in Florida, who
have long advocated for reproductive freedom and access to
safe and legal abortion. They may see this bill as an attack
on their constitutional rights and a violation of the autonomy
of women to make decisions about their own bodies.

2. Obstetricians and gynecologists: The ban on abortions after
15 weeks would directly impact obstetricians and gynecolo-
gists, who may lose business and face legal challenges if they
continue to provide abortion services beyond that gestation
limit.

3. Women’s health clinics: Women’s health clinics that provide
abortion services could be forced to close their doors or risk
being sued for violating the new law. This would result in
the loss of access to reproductive healthcare for thousands of
women in Florida.

4. Pro-Choice lawmakers: The passage of HB 5 would be a
significant defeat for pro-choice lawmakers who have been
working to protect and expand access to safe and legal abor-
tion. They may see this bill as an attack on their constituents’
rights and a violation of the US Constitution.

It is important to note that HB 5, or any other anti-abortion legis-
lation, is likely to face legal challenges and could be blocked by
court orders before it can be implemented. Additionally, there may
be political fallout for lawmakers who support such bills, as they
may lose votes and face backlash from constituents who value
reproductive freedom.

Table 10: Abortion Bill: Llama-2 generated bill high-
lights.

public positions of state legislators, which are more
reliable, official, and indicative of their preferences
than other methods, according to our ablation stud-
ies. According to our small-scale data collection
and analysis, state legislators have distinct patterns
of Twitter usage compared to other federal-level
political actors. Firstly, state legislators tweet less
frequently and tend to focus on personal or non-
political topics rather than policy issues or partisan
debates. Secondly, they do not interact much with
their followers or other politicians on the platform,
indicating a low level of engagement and dialogue.
Thirdly, our attempt to use Twitter data to complete
missing profiles for some state legislators did not
yield significant improvement in our results.

Incorporating Interest groups context. Our
framework uses interest group (IG) data for analyz-
ing the state legislative process. Our framework ex-
tends the traditional political science research that
mostly focuses on the impact of interest groups
on Federal legislation. For instance, Chand and
Schreckhise 2013 investigated the criteria that IGs
use to rate US senators according to their policy
views and votes. The authors use a simple statisti-
cal model to demonstrate that IGs take into account
senators’ ideology, party, seniority, committee, and
state characteristics. Jackson and Kingdon 1992 ex-
amine the role of ideology and IG scores in shaping
roll-call voting in Congress. The authors estimate
the ideological positions of legislators and IGs with
a Bayesian model, and find that both factors in-
fluence voting behavior, especially for moderate
legislators. Gilens and Page 2014 assess how US
policies align with different citizens’ preferences.
The authors compare average citizens, economic
elites, and interest groups’ opinions and outcomes.
They show that elites and groups affect policies,
while citizens have little impact.
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