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Abstract

Modern biomedical concept representations are
mostly trained on synonymous concept names
from a biomedical knowledge base, ignoring
the inter-concept interactions and a concept’s
local neighborhood in a knowledge base graph.
In this paper, we introduce Biomedical En-
tity Representation with a Graph-Augmented
Multi-Objective Transformer (BERGAMOT),
which adopts the power of pre-trained language
models (LMs) and graph neural networks to
capture both inter-concept and intra-concept in-
teractions from the multilingual UMLS graph.
To obtain fine-grained graph representations,
we introduce two additional graph-based ob-
jectives: (i) a node-level contrastive objective
and (ii) the Deep Graph Infomax (DGI) loss,
which maximizes the mutual information be-
tween a local subgraph and a high-level graph
summary. We apply contrastive loss on tex-
tual and graph representations to make them
less sensitive to surface forms and enable in-
termodal knowledge exchange. BERGAMOT
achieves state-of-the-art results in zero-shot en-
tity linking without task-specific supervision on
4 of 5 languages of the Mantra corpus and on 8
of 10 languages of the XL-BEL benchmark.

1 Introduction

Biomedical concepts, such as diseases, symptoms,
drugs, genes, and proteins, are critical for many
biomedical applications, including drug discov-
ery (Wu et al., 2018; Khrabrov et al., 2022; Zit-
nik et al., 2018), clinical decision making (Sut-
ton et al., 2020; Peiffer-Smadja et al., 2020), and
biomedical research (Lee et al., 2016; Tutubalina
et al., 2017; Fiorini et al., 2018; Soni and Roberts,
2021; Sakhovskiy et al., 2021; Sakhovskiy and Tu-
tubalina, 2022). The same biomedical concept may
have multiple nonstandard names, abbreviations,
and misspellings. Medical concept normalization
(MCN), also known as medical concept linking, is
a task of mapping entity mentions to a large set

of medical concept names and their unique iden-
tifiers (CUIs) from a knowledge base (KB). The
biomedical domain is characterized by extensive
KBs such as the Unified Medical Language System
(UMLS) (Bodenreider, 2004), which includes over
166 lexicons/thesauri with over 4M concepts and
15M concept names in 27 languages.

The development of meaningful and robust
biomedical entity representations continues to be a
challenging task for language models (LMs). Re-
cent studies have probed LMs trained on biomed-
ical texts in English and discovered that domain-
specific pre-trained language models (PLMs), such
as BioBERT (Lee et al., 2020) and SciBERT (Belt-
agy et al., 2019), exhibit high levels of bias and
lack synonym awareness (Sung et al., 2021). For
Spanish, the second language by number of con-
cept names in UMLS, PLMs pre-trained on clinical
data fall short compared to the simplistic sparse
baseline in the MCN task (Alekseev et al., 2022).

Textual triples from a KB are commonly used to
incorporate knowledge into neural networks with
metric learning and contrastive learning frame-
work (Phan et al., 2019; Miftahutdinov et al., 2021;
Liu et al., 2021a; Yuan et al., 2022; Zhou et al.,
2022). Positive and negative pairs are created us-
ing head and tail terms of the same or different
concepts, as illustrated in Fig. 1, where maux de
tête is a French synonym of headache but differs
from sharp headache (headache is a broader con-
cept for sharp headache). Graph-based represen-
tations are another way to represent biomedical
knowledge with concepts as nodes and relation-
ships as edges. Inspired by semantic matching
methods like TransE (Bordes et al., 2013) and Dist-
Mult (Yang et al., 2015), Yuan et al. (2022) pro-
posed a method to integrate term-relation-term sim-
ilarities into backbone LM. However, this approach
doesn’t fully utilize inter-concept interactions since
it learns from individual relation triplets rather than
performing an aggregation over the whole con-
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Figure 1: BERGAMOT model’s architecture overview. Our model consists of two encoders for text and graph data.
Graph encoder uses textual embeddings from BERT as an additional input. The final loss function is a weighted
sum of four terms: term-node, node-node, term-term contrastive losses, and local-global mutual information
maximization loss on node embeddings. As an example, the local subgraph contains two relation types from UMLS:
PAR (has parent relationship) and RB (has a broader relationship).

cept’s local neighborhood in Knowledge Graph
(KG) described by UMLS KB.

In this paper, we present Biomedical Entity
Representation with Graph-Augmented Multi-
Objective Transformer (BERGAMOT) which uti-
lizes PLMs and graph neural networks (GNNs)
to capture inter-concept and intra-concept inter-
actions from the multilingual UMLS graph. As
shown in Fig. 1, the BERGAMOT architecture
includes four losses: (i) a textual term-term con-
trastive loss that learns from positive and negative
concept name pairs; (ii) a node-node contrastive
loss that learns on concept nodes to distinguish
between nodes based on their local subgraphs in
larger KG; (iii) DGI loss that lets a GNN distin-
guish between factually accurate (present in the
knowledge graph) concept subgraphs and corrupted
ones; (iv) an intermodal contrastive loss that en-
ables mutual information exchange between tex-
tual and graph encoders. The source code and
pre-trained models are freely available at: https:
//github.com/Andoree/BERGAMOT.

2 Related Work

MCN and entity representations There are sev-
eral conventional approaches to address an MCN
problem. The most common is the entity classi-
fication (Niu et al., 2019; Lou et al., 2020) into a
small number of target concepts. However, UMLS
and similar KBs may include millions of different
concepts arranged in a hierarchical structure. An-
other popular approach is ranking mentions or con-

cepts by the mutual similarity term learnt from pos-
itive and negative pairs on some corpora (Mondal
et al., 2019). Aside from MCN methods, a plethora
of works are focused on features and representa-
tions of entity mentions based on syntax, morphol-
ogy, and synonyms (Aronson, 2001; Van Mulligen
et al., 2016; Dermouche et al., 2016). Mondal et al.
(2019) chose a straightforward convolutional layer
as an encoder. The network was trained with the
triplets of a disease mention, as well as positive
and negative concept candidates. The supervised
BioSyn model (Sung et al., 2020) maximizes the
likelihood of synonym appearance among the most
similar 20 terms. Morphology was encoded with
a character-level TF-IDF representation to obtain
a sparse similarity score. The distance between
BioBERT (Lee et al., 2020) CLS tokens was uti-
lized as a high-level dense similarity. The final
similarity score is a weighted sum of both sparse
and dense similarities. DILBERT (Miftahutdinov
et al., 2021) introduces novel negative sampling
strategies for a triplet loss, utilizing the hierarchi-
cal structure of the UMLS. Both BioSyn and DIL-
BERT are limited to a single language (English)
and a small concept subset within a specific ter-
minology. Entity representation learning may be
augmented with external knowledge from domain-
specific KBs (Phan et al., 2019; Michalopoulos
et al., 2021; Liu et al., 2021a,b; Yuan et al., 2022).
(Phan et al., 2019) proposes encoding contextual
meaning, conceptual meaning, and the similarity
between synonyms during the representation learn-
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ing process. Two novel training objectives are forc-
ing the similarity between the representation of a
named entity and its synonym or target concept, re-
spectively. Despite the promising results, the rank-
ing based on representations from this model per-
forms worse than a plain dictionary-based baseline.
UmlsBERT (Michalopoulos et al., 2021) discussed
a novel knowledge augmentation strategy to utilize
domain-specific knowledge from UMLS during a
model’s pretraining phase. SapBERT (Liu et al.,
2021a) model takes advantage of a self-alignment
pretraining (SAP) on the UMLS synonymous pairs.
The resulting BERT-like model outperforms its
predecessors (BioBERT, SciBERT, UmlsBERT).
CODER, using the UMLS graph and a relational
loss with SAP, outperforms SapBERT on the MCN
task (Yuan et al., 2022).

Graph neural networks in biomedical domain
GNNs have gained attention in the last decade, with
comprehensive surveys exploring their applications
in various fields, including biology and medicine.
GNNs are successfully applied to a wide range of
graph- and node-level tasks in fields of drug discov-
ery and material design (Wu et al., 2018; Khrabrov
et al., 2022; Zitnik et al., 2018), medicine (Ahmedt-
Aristizabal et al., 2021; Gligorijević et al., 2021),
and Question-Answering (QA) tasks related to
knowledge graphs (KG) (Vollmers et al., 2021;
Chen et al., 2020). Graph-level biomedical tasks
are provided in Open Graph Benchmark (Hu et al.,
2020), while KG-related evaluation is not that
straightforward. The majority of approaches fo-
cused on QA evaluation or conventional KG link
prediction. We can divide the considered meth-
ods into three groups: LM- or KG-based and joint
LM+KG. Despite approximately similar training
data (subsets of UMLS) and backbone (SciBERT,
BART (Lewis et al., 2020)), the approaches are
entirely different due to data preparation proce-
dures and finetuning. Chang et al. (2020) pro-
posed a completely KG-based biomedical bench-
mark. They trained TransE, ComplEx (Trouil-
lon et al., 2016), DistMult, SimplE (Kazemi and
Poole, 2018), and RotatE (Sun et al., 2019) on
the SNOMED-CT dataset to compare the results
with static Snomed2Vec (Agarwal et al., 2019) and
Cui2Vec (Beam et al., 2020) baselines. While static
methods did not surpass any KG-trained methods,
KG-based models performed remarkably worse in
comparison with LM-based ones due to the lack of
a text encoder. An alternative approach to bench-

marking is provided in the LM+KG architectures’
evaluation. QA-GNN (Yasunaga et al., 2021) and
GreaseLM (Zhang et al., 2022) achieved state-of-
the-art scores on MedQA (Jin et al., 2021). How-
ever, they are both trained in a manner of fine-
tuning LM with KG-augmentation. This strategy
does not allow us to completely adapt models to
the MCN task.

3 Background and architecture

3.1 UMLS knowledge graph

Let V denote a set of all concepts present in a
knowledge base and R denote a set of possible
relation types between concepts from V . Knowl-
edge graphs, such as UMLS, usually store rela-
tional information in the form of relation triplets
(h, r, t) ∈ V × R × V . Let E denote a set of all
unique relation triplets from a given KG. Thus, the
UMLS graph can be defined as an oriented edge-
labeled graph G = G(V, E , R) with a set of nodes
V , a set of labeled oriented edges E , and a set of
possible edge labels R. For each concept c ∈ V ,
UMLS presents a set of k synonymous concept
names Sc = {sc1, sc2, . . . , sck}. For each name from
Sc, UMLS stores the label of the language it came
from.

3.2 Self-alignment pretraining

A reasonable and straightforward way to learn an
informative representation space of biomedical en-
tities is to represent textual knowledge from KG
in the form of positive and negative term pairs and
optimize some contrastive learning loss function.

In this work, we adopt the self-alignment pre-
training (SAP) procedure proposed by Liu et al.
(2021a). To enrich the training procedure with
harder negative samples, SAP employs online hard
mining for valid triplets (Mikolov et al., 2013;
Gillick et al., 2019). During SAP, the model is
encouraged to produce similar representations for
all terms that represent the same concept (share
the same CUI). At each pretraining step, we sam-
ple a set T that consists of N positive samples
(c, sci , s

c
j) ∈ V × Sc × Sc. Given T , SAP con-

structs all possible term triplets (sp, sa, sn) such
that p = a and n ̸= a. sa is called an anchor
term; sp is a positive term for sa (i.e., sp and sa are
synonymous terms representing the same concept
a = p); sn is a negative term for sa (i.e., sn and
sa represent non-matching concepts). Each triple
produces a positive pair (sa, sp) and a negative pair
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(sa, sn). To keep only the most informative triples,
we use online hard mining for valid triplets in re-
spect to the following constraint:

∥fenc(sa)−fenc(s
p)∥ < ∥fenc(sa)−fenc(s

n)∥+λ

where fenc is a BERT-based textual encoder, ∥·∥
is the normalized L2-norm, and λ is a pre-defined
mining margin. Thus, the mining procedure dis-
cards all the triplets such that the distance from an
anchor to its negative sample is greater than the
distance to its positive sample by more than λ. Let
P and N denote the sets of all positive and nega-
tive term pairs, respectively. The SAP procedure
utilizes the Multi-Similarity (MS) loss (Wang et al.,
2019) to learn from P and N .

Lsap =
1

|B|

|B|∑

i=1


 1

α
log

(
1 +

∑

n∈Ni

eα(Sin−ϵ)

)
+

+
1

β
log

(
1 +

∑

p∈Pi

e−β(Sip−ϵ)

)
 ,

(1)
where α, β, and ϵ are the parameters of MS-loss.

Pi and Ni are the sets of positive and negative
samples for the anchor concept i. Sin and Sip

are the cosine similarities of anchor i to negative
sample n and positive sample p, respectively.

3.3 Graph neural networks
3.3.1 Message passing layers
A common approach to capture the complex re-
lationships between nodes in the graph is to iter-
atively update the representation of a node v by
passing and aggregating messages from its local
node neighborhood N(v) using a graph neural net-
work. Gilmer et al. (2017) proposed a general Mes-
sage Passing Neural Network (MPNN), which ap-
plies a composition of message function fm and
fu to update the node representation h

(l)
v at the

(l + 1)-th MPNN layer:

h(l+1)
v = fu(h

(l)
v ,

∑

(r,u)∈N(v)

fm(h(l)v , h(l)u , er))

where N(v) = {(r, u)|(v, r, u) ∈ E} is the set of
pairs describing the local neighborhood of node
v; er are the edge features. Each pair (r, u) in-
dicates the presence of a directed edge of type r
from node v to node u in graph G. To avoid exces-
sive computational complexity caused by signifi-
cant variation in the number of neighbors across

different nodes, we use a uniformly drawn fixed-
size subset of neighbors instead of the entire node
neighborhood as proposed by Hamilton et al.
(2017). The primary distinguishing factor among
various GNN models is the selection of fm and
fu functions in the MPNN computational block.
In GraphSAGE (Hamilton et al., 2017), a com-
mon and rather simple implementation of MPNN
framework, an element-wise operator (e.g., max-
or mean-pooling) is used as an fm to aggregate the
vectors of neighbor nodes N(v) into a single vector.
The aggregated representation is further concate-
nated with the original representation and passed
to a linear layer W l+1 with a non-linear activation
function σ. In this work, we use the GraphSAGE
implementation with mean-pooling aggregation:

h(l+1)
v = σ(W l · [h(l)v ∥MEAN(N(v))])

where MEAN is the mean-pooling operator,
[· ∥ ·] is the concatenation of two vectors. Since the
parameter matrix W l is the same for each r ∈ R
GraphSAGE operator prevents a thorough use of
edge types and features. Regarding the UMLS
graph, it means that GraphSAGE can only cap-
ture the textual node features and knowledge graph
geometrical structure, though it doesn’t consider
relation-specific information.

Schlichtkrull et al. (2018) proposed Relational
Graph Convolutional Network (R-GCN) architec-
ture that performs relation-aware message passing
by introducing a relation-specific parameter matrix
W l

r for each relation r ∈ R at the neighborhood
aggregation step of Message Passing block:

h(l+1)
v = σ


 ∑

(r,u)∈N(v)

1

|N(v)|(W
l
rh

(l)
u +W l

oh
(l)
v )




σ is a non-linear activation function and W l
o is a

self-loop parameter matrix.
Despite being able to perform relation-aware

message passing, R-GCN shares the limitation of
GraphSAGE as it does not allow learning the rela-
tive importance of neighboring nodes. Graph atten-
tion network (GAT) (Veličković et al., 2018; Brody
et al., 2022) addresses the limitation by introducing
the self-attention over neighboring nodes and learn-
ing the aggregated neighborhood representation as
the weighted sum of neighboring nodes representa-
tions. Given two node representations h(l−1)

u and
h
(l−1)
v , the l-th GAT layer computes the relevance
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of node u for the target node v as the normalized
attention score α

(l)
uv:

e(l)uv = aT · LeakyReLU(W l · [h(l−1)
u ∥ h(l−1)

v ])

α(l)
uv =

exp(e
(l)
uv)∑

(r,w)∈N(v) exp(e
(l)
wv)

,

where a is a learnable weight vector. With the atten-
tion scores obtained, the aggregated neighborhood
representation is computed as a weighted sum of
neighboring nodes embeddings:

h(l+1)
v = σ


 ∑

(r,u)∈N(v)

αuv ·W lh(l)u +W l
oh

(l)
v




3.3.2 Deep Graph Infomax framework
To enrich an LM and a GNN with graph structure
knowledge, we utilize the Deep Graph InfoMax
framework (Veličković et al., 2019). DGI adopts
an encoder model GNN to maximize the mutual
information between global graph structure and
its local subgraphs. This method is grounded on
minimizing a noise-contrastive loss function

Ldgi =
1

N +M

N∑

i=1

GNN
[
logD(h⃗i, s⃗)

]
+

+

M∑

j=1

GNN
[
log

(
1−D(

⃗̃
hj , s⃗)

)]
,

where s⃗ is a graph summary obtained as a mean
embedding of nodes in a graph; D is a learnable
discriminator with sigmoid activation which scores
summary-graph pairs. The loss aims at distinguish-
ing between input node representations h and neg-
ative samples h̃. The procedure starts with collect-
ing initial and corrupted node features of graph
G, after that we obtain representations via GNN ,
respectively, for each type of feature vectors. By
leveraging local mutual information maximization
and graph convolutional architectures, we make the
features of local subgraphs to be consistent with
the global properties of a larger graph.

3.4 BERGAMOT
We introduce a novel biomedical entity representa-
tion learning model BERGAMOT which leverages
graph and textual encoders to infuse inter-concept
interactions from a biomedical KG into LM. In
BERGAMOT, we adopt and extend the pretraining
procedure described in Sec. 3.2. Before moving on

to the description of the pretraining procedure, let
us first describe the structure of a training batch B
which consists of (i) textual positive concept name
pairs and (ii) local concept subgraphs.

Textual pairs We begin by sampling a set T , con-
sisting of N random positive concept name pairs
for concepts that have at least two distinct concept
names. Let (u, v) denote a pair of concept names
that represent the same concept c (e.g., "Maux de
tête" and "headache" as shown in Fig 1). We en-
code both textual names with a BERT-based LM re-
sulting in two vector representations euc = LM(u)
and evc = LM(v), respectively.

Concept subgraphs A positive textual pair (u, v)
in T corresponds to a single UMLS concept c. As
c is also a node in the UMLS KG, we sample the
graph Gc that is centered around c and includes
a set of its neighboring nodes N(c). Next, we
have two ways to initialize the central node c from
Gc with either LM(v) or LM(u) resulting in two
graphs Gv

c and Gu
c with identical structure but dif-

ferent initial node features. For instance, we can
initialize a central node with a BERT embedding
of either "headache" or "Maux de tête" (see Fig. 1).
Non-central concept nodes are initialized with LM
embeddings of their random concept names inde-
pendently for both graphs. By applying a L-layer
graph neural network we obtain two graph repre-
sentations of the concept c: guc = GNN(Gu

c ) and
gvc = GNN(Gv

c).
BERGAMOT’s design is inspired by two major

goals. First, we want to encode concept names
and graph structure into a single shared embedding
space while preserving an essential property for
entity linking: various (both textual and graph) rep-
resentations of the same concept must have similar
embeddings. Second, since obtaining a relevant
KG subgraph is not feasible at the inference stage,
we want to infuse rich structural knowledge from
the UMLS graph into a language model. To reach
both goals, our model simultaneously learns 4 con-
trastive objectives on concept representations as
shown in Fig. 1.

Term-term contrastive loss Lsap To let a BERT-
based model learn semantic and lexical similarity
of various concept names, we apply MS-loss on
textual pairs. This objective seeks to pull textual
embeddings (euc , e

v
c) of concept c’s synonymous

names closer in terms of cosine similarity, ignor-
ing inter-concept relations. We use in-batch hard
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Model English Spanish Dutch French German avg

@1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5
Full test set

Supervised SOTA
(Alekseev et al., 2022)

94.25 97.12 85.54 92.17 85.83 87.40 84.23 94.14 89.55 95.02 87.88 93.17

mSapBERT 94.03 96.90 83.73 92.17 84.25 87.40 82.43 93.69 88.06 95.52 86.5 93.14
mCODER 93.14 96.68 83.73 90.96 85.04 90.55 89.19 92.79 86.57 94.53 87.54 93.1
GraphSAGE-
BERGAMOT

93.81 96.90 81.93 90.96 84.25 89.76 84.68 93.24 88.06 94.03 86.55 92.98

RGCN-BERGAMOT 93.36 96.46 83.73 92.17 84.25 89.76 85.59 92.79 87.56 96.02 86.9 93.44
GAT-BERGAMOT 94.69 97.57 85.54 94.58 86.61 89.76 84.68 94.14 91.54 97.01 88.61 94.61

Filtered test set
Supervised SOTA
(Alekseev et al., 2022)

80.95 91.27 75.32 87.01 78.46 80.00 66.67 86.87 80.37 90.65 76.35 87.16

mSapBERT 80.16 90.48 71.43 87.01 75.38 80.0 62.63 85.86 77.57 91.59 73.43 86.99
mCODER 76.98 89.68 71.43 81.82 76.92 86.15 77.78 83.84 74.77 89.72 75.58 86.24
GraphSAGE-
BERGAMOT

79.37 90.48 67.53 84.42 75.38 84.62 67.68 84.85 77.57 88.79 73.51 86.63

RGCN-BERGAMOT 77.78 88.89 71.43 85.71 75.38 84.62 69.70 83.84 76.64 92.52 74.19 87.12
GAT-BERGAMOT 82.54 92.86 75.32 90.91 80.0 84.62 67.68 86.87 84.11 94.39 77.93 89.93

Table 1: Multilingual evaluation results in terms of acc@1 and acc@5 on the English, Spanish, Dutch, French, and
German subsets of Mantra corpus. The best results are highlighted in bold.

Model Base model Graph Spanish Dutch French German avg

@1 @5 @1 @5 @1 @5 @1 @5 @1 @5
mSapBERT mSapBERT — 71.43 87.01 75.38 80.0 62.63 85.86 77.57 91.59 71.75 86.12
SapBERT text only mSapBERT — 67.53 88.31 76.92 83.08 71.72 88.89 84.11 92.52 75.07 88.2

BERGAMOT
mSapBERT Monolingual 71.43 83.12 80.0 83.08 69.70 85.86 80.37 92.52 75.38 86.15

XLMR Multilingual 75.32 90.91 80.0 84.62 67.68 86.87 84.11 94.39 76.78 89.2

Table 2: Evaluation results of GAT-BERGAMOT models pre-trained on monolingual and multilingual graphs in
terms of Acc@1 and Acc@5 on filtered test sets of the Mantra corpus. The best results are highlighted in bold.
"SapBERT text only" is the mSapBERT model additionally trained on monolingual positive term pairs with the
textual loss only. For each model except the mSapBERT baseline, we trained its two variations using the XLMR
and mSapBERT checkpoints for the initialization. The best checkpoint is reported.

negative samples to push textual representations of
non-matching concepts far from each other.

Node-node contrastive loss Lnode Similarly to
term-term loss, we apply MS-loss to pull graph
embeddings (guc , g

v
c ) representing the same con-

cept c closer pushing away the representations of
non-matching ones. Unlike textual encoder, GNN
is aware of relations between concepts as it sees
neighboring nodes N(c) rather than a single con-
cept c only.

Term-node contrastive loss Lint In batch B, a
central concept node c has four representations: euc
evc , guc , and gvc . While Lsap and Lnode optimize
unimodal textual and graph models separately, our
ultimate goal is to enhance a language model with

graph structure knowledge accumulated in graph
embeddings. To enable mutual information sharing
between a text and a graph encoder we introduce a
third contrastive loss which learns from two-modal
positive pairs (euc , g

u
c ) and (evc , g

v
c ). Intuitively, we

expect our LM to memorize in-domain knowledge
from KG. Similarly to term-term and node-node
objectives, we adopt MS-loss and two-modal in-
batch hard negative samples. Since Lint makes LM
and graph encoders exchange their knowledge, we
encourage an LM to be more aware of inter-concept
relations.

DGI loss As an additional pretraining objective
for a graph encoder, we employ the DGI framework
and calculate the DGI loss Ldgi. We use a union
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of all local concept subgraphs from the batch B to
form a global batch GB . Readout function R(GB)
calculates a mean embedding over N central nodes
of concept subgraphs. To obtain a corrupted graph
G̃B , we randomly shuffle central nodes across all
positive paired samples. The choice of the corrup-
tion function encourages our model to distinguish if
nodes N(c) are actual neighbors of a central node
c. The intuition behind adding the DGI loss is to
learn more informative node features. Since DGI
captures graph structural information by learning
on true and corrupted graphs, we expected it to
contribute to LM’s structural awareness of concept
relations.

For Lsap,Lnode, and Lint we employ MS-loss
(see Eq. 1) for maximum comparability with mul-
tilingual versions of SapBERT (Liu et al., 2021b)
and CODER (Yuan et al., 2022) as both models
utilize this contrastive objective in Lsap. Also, MS-
loss was experimentally shown to be the most ef-
fective contrastive objective to learn from UMLS
synonyms (Liu et al., 2021a) among 7 variants. The
final training objective used to pre-train the BERG-
AMOT model is defined as the weighted sum of
four loss functions:

L = Lsap + Lnode + Lint + λdgiLdgi,

where λdgi is the pre-selected weight of DGI loss.
After pretraining on UMLS we discard the graph
encoder as in general case there is no graph avail-
able during inference. Thus, the result of the pre-
training procedure is a BERT-based model enriched
with knowledge from the UMLS graph.

4 Experimental evaluation

To train BERGAMOT, we use the UMLS 2020AB
release which contains approximately 4.4 million
concepts and 15.9 million unique concept names
from 215 source vocabularies. The full statistics on
pre-training multilingual and monolingual data as
well as the number of concept names for languages
are shown in Appendix A. We remove all dupli-
cated edges (i.e., edges with matching source and
target concepts, and relation type). To ensure each
batch includes a sufficient amount of positive sam-
ples, we pre-generate synonymous concept name
pairs following Liu et al. (2021a). Since random
sampling could result in the underrepresentation of
languages other than English, we explicitly add (i)
monolingual non-English and (ii) cross-lingual pos-
itive concept name pairs to each batch. However,

the quadratic growth in the number of possible lan-
guage pairs with respect to the number of languages
limits our ability to enrich the training dataset with
multilingual data. We discard all cross-lingual pairs
which consist of two non-English terms thus forc-
ing all languages to benefit from extensive English
knowledge.

To explore how the BERGAMOT’s performance
is affected by a monolingual low-resource setting,
we additionally subsample a monolingual subgraph
and generate a monolingual set of positive pairs for
Spanish, Dutch, French, and German. We create
each dataset by removing all terms that came from
a non-target language and all nodes that have no
concept name in a target language. For statistics on
positive textual pairs count, number of edges and
nodes, please see Tab. 8 in Appx B.

For evaluation on the MCN task, we use two
cross-lingual benchmarks:

• a medical-crossing benchmark (Alekseev
et al., 2022) based on Mantra corpus (Kors
et al., 2015) of text units such as scientific ab-
stract titles, drug labels, patent claims mapped
to the UML concepts.

• XL-BEL (Liu et al., 2021b), with Wikipedia
entities linked to the UMLS.

Mantra corpus covers mentions in English, French,
German, Spanish, and Dutch while XL-BEL cov-
ers 10 languages. Both benchmarks allow zero-
shot evaluation only, i.e., there are no training sets.
Additionally, we employ the French Quaero cor-
pus (Névéol et al., 2014) and two datasets in Span-
ish: (i) CodiEsp-Diagnostico (Miranda-Escalada
et al., 2020b) and (ii) CANTEMIST (Miranda-
Escalada et al., 2020a). Alekseev et al. (2022) intro-
duced a novel filtering procedure which drops test
set mentions that are identical to a term from the
dictionary. For dataset descriptions and statistics,
refer to Appendix B.

To explore the ability of our model to solve di-
verse non-MCN NLP tasks, we additionally evalu-
ate our model on biomedical Question Answering
(QA) and Textual entailment (TE) tasks. We con-
ducted QA experiments on two datasets: (i) Pub-
MedQA (Jin et al., 2019) and BioASQ (Nentidis
et al., 2019). The goal of TE task is to determine a
logical relationship between two pieces of text: a
premise and a hypothesis. For TE experiments, we
utilize two corpora: (i) MedNLI (Shivade et al.,
2019) and (ii) SciTail (Khot et al., 2018). For
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Model QUAERO-E QUAERO-M CodiEsp-D CANTEMIST

@1 @5 @1 @5 @1 @5 @1 @5

mSapBERT 32.43 41.64 39.42 51.6 45.98 61.96 52.82 61.44
mCODER 33.59 40.80 40.30 50.26 35.52 49.14 48.59 58.84
GraphSAGE-BERGAMOT 35.30 41.60 40.94 51.24 46.45 59.55 51.93 61.54
RGCN-BERGAMOT 33.59 39.55 40.83 50.26 46.3 62.1 52.33 60.43
GAT-BERGAMOT 35.39† 43.92 42.94† 53.88 48.74† 63.61 57.41† 61.38

Table 3: Evaluation results in terms of acc@1 and acc@5 on filtered test sets of the French QUAERO corpus
(EMEA and MEDLINE subsets) and the Spanish CodiEsp Diagnostico and CANTEMIST corpora. The best results
are highlighted in bold. † denotes statistical significance of GAT-BERGAMOT over both mSapBERT and CODER
(Wilcoxon, ρ < 0.01).

Model en es de fi ru tr ko zh ja th avg

@1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5
mSapBERT .787 .817 .578 .634 .331 .371 .188 .22 .36 .422 .423 .469 .181 .221 .188 .235 .235 .278 .207 .274 .348 .394
mCODER .765 .796 .582 .626 .331 .384 .203 .244 .344 .386 .403 .441 .022 .024 .184 .234 .238 .276 .029 .032 .31 .344
BERGAMOT .786 .810 .582 .644 .332 .382 .229 .261 .373 .447 .419 .482 .185 .227 .189 .244 .254 .3 .215 .275 .356 .407

Table 4: Evaluation of BERGAMOT model with GAT graph encoder on multilingual XL-BEL benchmark. The
benchmark includes entities in English (en), Spanish (es), German (de), Finnish (fi), Russian (ru), Turkish (tr),
Korean (ko), Chinese (zh), Japanese (jp), Thai (th) languages. The best results are highlighted in bold.

Model QA Entailment
PMQA BioASQ MedNLI ST

SapBERT 63.1 74.3 82.8 90.2
CODER 63.1 73.3 82.4 90.9
BERGAMOT 62.3 76.4 83.1 90.3

Table 5: Evaluation of GAT-BERGAMOT on: (i) Ques-
tion Answering PubMedQA (PMQA) and BioASQ
datasets; (ii) Textual Entailment MedNLI and SciTail
(ST) datasets in terms of accuracy.

Model set-up Mantra XL-BEL
@1 @5 @1 @5

BERGAMOT 77.93 89.93 35.6 40.7
Lsap only 73.43 86.99 34.8 39.4
-Ldgi 76.25 88.52 34.1 39
-Lsap 72.64 83.09 30.6 35
-Lnode 74.55 88.38 36.1 41.2
-Lint 77.41 88.86 34.9 39.5

Table 6: Ablation results of GAT-BERGAMOT. We
report the mean acc@1 and acc@5 over all languages
present in the Mantra and XL-BEL corpora. Lsap only
set-up refers to mSapBERT which trains with a single
text-based training objective.

details on QA and TE datasets, see Appendix D.
For TE, we adopted the Next Sentence Prediction
(NSP) data format from vanilla BERT (Devlin et al.,
2019): two sentences for the entailment task are
separated with a special separator token, and the
model is trained on a classification task.

4.1 Experimental Setup
For evaluation, we employ a ranking approach over
embeddings of mentions and potential concepts.
After applying an average pooling layer over a
BERT-based encoder, the inference task is then
reduced to finding the closest concept name rep-
resentation to the entity mention representation in
a joint embedding space. We use the Euclidean
distance as the metric. Nearest concept names are
chosen as top-k concepts for entities. We evaluate
the models in the information retrieval scenario,
where the goal is to find top-k concepts for every
entity mention in a dictionary of concept names
and their identifiers. Following previous works
on entity linking (Suominen et al., 2013; Pradhan
et al., 2014; Wright et al., 2019; Phan et al., 2019;
Liu et al., 2021a), we use the top-k accuracy as
the evaluation metric: Acc@k = 1 if the correct
UMLS concept unique identifier is retrieved at the
rank ≤ k, otherwise Acc@k = 0. We note that
BERGAMOT’s graph encoder is discarded during
inference and only a BERT-based encoder is used
for ranking.

4.2 Results
Medical Concept Normalization Tab. 1 shows
the acc@1 and acc@5 metrics for datasets in five
languages. BERGAMOT outperformed all models
on four sets except the French dataset on both full
and filtered test sets. The best results are achieved
by GAT-BERGAMOT which consistently ourper-
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forms mSapBERT on all languages proving the
effectiveness of three additional training objectives
that rely on graph embeddings. Poor performance
of GraphSAGE- and RGCN- versions of our model
indicate the effectiveness of relative neighbor im-
portance learnt in GAT via the attention mechanism.
Interestingly, GAT-BERGAMOT achieves state-of-
the-art results on both resource-rich (English and
Spanish) and low-resource (German and Dutch)
languages. On English, it outperforms a super-
vised model that is fine-tuned on English data. We
must note that due to the small dataset size, GAT-
BERGAMOT’s improvement over mSapBERT and
mCODER is statistically significant (Wilcoxon,
ρ < 0.05) for the German part only. We provide
examples of models’ predictions in Appx. G.

In the next series of experiments, we explored
how BERGAMOT benefits from both monolingual
and multilingual pre-training set-ups. For each of
four non-English parts of the Mantra corpus, we
trained a monolingual SapBERT and a monolin-
gual GAT-BERGAMOT model. Tab. 2 presents
the performance of models pre-trained on multi-
lingual and non-English monolingual graphs and
concept names. Based on the results, we can notice
that BERGAMOT benefits from the multilingual
bi-modal data the most. It appears that training a
single multilingual graph-augmented BERGAMOT
eliminates a need for further pretraining of mono-
lingual LMs (either SapBERT or BERGAMOT)
on UMLS. On average, monolingual BERGAMOT
models perform on par with monolingual SapBERT
models.

Tab. 3 presents the evaluation results on filtered
test sets of the French QUAERO corpus and the
Spanish CodiEsp-D and CANTEMIST corpora.
GAT-BERGAMOT consistently outperforms two
other BERGAMOT models as well as mSapBERT
and mCODER baselines pushing the existing state-
of-the-art on these corpora. Notably, the GAT-
BERGAMOT’s improvement over both baselines
is statistically significant (Wilcoxon, ρ < 0.01).
While mCODER outperforms GAT-BERGAMOT
on the French part of Mantra, the latter shows a sta-
tistically significant improvement on both subsets
of QUAERO corpus.

We further investigated the BERGAMOT’s per-
formance on the XL-BEL benchmark. Tab. 4
presents the evaluation results. GAT-BERGAMOT
outperforms mSapBERT on 8 of 10 languages with
an average improvement of 0.8% acc@1. The
largest acc@1 growth compared to mSapBERT is

observed for low-resource languages (+4.1% for
fi, +1.9% for ja, +1.3% for ru). Since mCODER
does not support Korean and Thai, it is not directly
comparable to GAT-BERGAMOT on full XL-BEL.
However, our model outperforms mCODER on 8
remaining languages.

The evaluation results of GAT-BERGAMOT on
question answering and textual entailment tasks are
presented in Table 5. Despite an introduction of
additional entity-oriented graph-based losses, GAT-
BERGAMOT did not lose the capability to solve
tasks that require text understanding. It performs on
par or better than text-only SapBERT. An improve-
ment of 2.1% over SapBERT on PubMedQA indi-
cates a potential of using graph-induced pretrain-
ing objectives for tasks involving domain-specific
knowledge, such as question answering.

Ablation study To explore the effectiveness of
each training objectives, we conducted an abla-
tion analysis by training a GAT modification with
each of four individual training objectives removed.
Tab. 6 shows the change in performance on XL-
BEL and the filtered version of Mantra. Despite
losing 1.5% and 1.68% acc@1 on Mantra and XL-
BEL, respectively, a model with no Ldgi still shows
a decent performance outperforming SapBERT on
Mantra. With DGI loss removed, BERGAMOT
still outperforms both SapBERT (+2.82%) and
CODER (+0.67%). Removal of explicit modal-
ity interaction introduced through Lint results in a
slight drop of 0.52% and 0.7% acc@1 on Mantra
and XL-BEL, respectively. Interestingly, removal
of Lnode leads to an average 3.38% acc@1 drop on
Mantra and an average improvement of 0.5% on
XL-BEL.

5 Conclusion and Future Work

We presented BERGAMOT, a graph-augmented
architecture with backbone LM designed to learn
inter-concept and intra-concept interactions from
the multilingual knowledge graph. BERGAMOT
outperforms existing language models pre-trained
on knowledge triples from UMLS on two concept
normalization benchmarks with a diverse set of
languages. Since BERGAMOT is currently an en-
coder model and it is not able to generate texts,
an important future research would be to extend
BERGAMOT to include language generation capa-
bilities and advance KG-enhanced language gener-
ation.
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6 Limitations

Large domain-specific graphs. The graph neu-
ral networks in BERGAMOT employ a large
biomedical knowledge graph, the Unified Medical
Language System (UMLS), which contains over
4 million concepts and 15 million concept names.
It is important to note that the use of knowledge
graphs for different domains with a smaller number
of nodes and edges may affect the performance.
The size and complexity of the knowledge graph
can have a significant impact on the ability of the
model to learn and make accurate predictions. Ad-
ditionally, it is worth noting that while the study
focused on the biomedical domain, BERGAMOT
could potentially be trained on general-domain
knowledge graphs, such as DBPedia or Wikidata.

Only entity-related tasks for evaluation. In this
paper, experiments were done on cross-lingual en-
tity linking to see how well BERGAMOT captures
knowledge of a multilingual knowledge graph in
the biomedical domain. However, to fully assess
the ability of BERGAMOT to facilitate automatic
knowledge base construction in different languages,
it may be beneficial to include additional evalu-
ation tasks such as link prediction or candidate-
free taxonomy enrichment. Additionally, probing
the knowledge contained in BERGAMOT across
multiple languages could be evaluated using the
multilingual Language Model Analysis (LAMA)
benchmark.

Mantra and XL-BEL. We acknowledge that our
choice of Mantra and XL-BEL datasets for MCN is
non-exhaustive: we focus on standard benchmarks
from previous work, yet both datasets have cer-
tain limitations. For example, the Mantra dataset
is manually annotated but relatively small, which

can make it difficult to measure statistical signif-
icance. Similarly, the XL-BEL dataset is based
on Wikipedia texts without manual annotation by
medical experts, which may limit its relevance to
real-world medical applications. Furthermore, both
datasets only include entity mentions and termi-
nology in a target language (e.g., French), while
BERGAMOT can encode concept names in as
many languages as possible for inference to bet-
ter exploit language connections.

Ethics Statement

One limitation of using external knowledge sources,
such as the Unified Medical Language System
(UMLS), is that these sources may not be complete
for all languages, which can affect the performance
of language models and their ability to infer med-
ical concepts from text. Additionally, significant
changes to UMLS may require re-training of the
language model. BERGAMOT, like any language
model, may be subject to representation biases and
potentially misleading results, which is a critical
concern in the healthcare domain.
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A Statistics on UMLS graph

Tab. 7 presents statistics on the number of concept
names for each language.

The statistics on pre-training graph and number
of positive concept name pairs is shown in Tab. 8.
The most resource-rich languages in the biomedical
domain are English and Spanish, while German and
Dutch can be considered as low-resource languages.
In particular, the German UMLS is only 1.48%
of the UMLS in vocabulary and 3.72% in source
counts (NIH).

B Concept Normalization data

Mantra GSC (Kors et al., 2015) is a collection of
biomedical text units such as drug labels and patent
claims manually cross-labeled by several annota-
tors in five different languages: English, French,
German, Spanish, and Dutch. The Mantra termi-
nology is a subset of UMLS with concepts from
MeSH, SNOMED-CT, and MedDRA extracted
from the UMLS 2020 AA release. Since the Mantra
corpus is too small for fine-tuning, all entity men-
tions are used as test data.

The CodiEsp dataset was presented at Clinical
Case Coding in Spanish Shared Task at the CLEF
2020 evaluation forum (Miranda-Escalada et al.,
2020b). It contains clinical records with entities
mapped to the ICD-10 vocabulary (CodeBooks,
2016); we use the CodiEsp Diagnosis (CodiEsp-D)
subset and the dictionary provided in CodiEsp.

CANTEMIST (CANcer TExt MIning Shared
Task on IberLEF 2020 (Miranda-Escalada et al.,
2020a) is a manually annotated text corpus of tu-
mor morphology mentions in Spanish mapped to
the latest Spanish version of the oncological ontol-
ogy, which is a part of ICD-O (World Health Orga-
nization, 2013); we use the dictionary from (López-
Úbeda et al., 2020).

The QUAERO French Medical Corpus (Névéol
et al., 2014) is collection of French entities from

Table 7: UMLS statistics on the number of concept
names.

Language # concept names percentage

English 11,280,428 70.78%
Spanish 1,589,581 9.97%
French 431,527 2.71%

Portuguese 423,826 2.66%
Japanese 332,099 2.08%

Dutch 293,817 1.84%
Russian 293,031 1.84%
Italian 251,912 1.58%

German 235,736 1.48%
Czech 198,115 1.24%
Korean 147,217 0.92%

Hungarian 109,271 0.69%
Chinese 81,916 0.51%

Norwegian 63,797 0.4%
Polish 51,778 0.32%

Turkish 51,597 0.32%
Estonian 31,183 0.2%
Swedish 30,439 0.19%
Finnish 25,489 0.16%
Croatian 10,035 0.06%

Greek 2,286 0.01%
Latvian 1405 0.01%
Danish 723 0.1%
Basque 695 <0.1%
Hebrew 485 <0.1%

UMLS
dataset

# Positive
term pairs

# graph
nodes

# graph
edges

Full UMLS
(Multilingual)

30.6M 4.36M 38.81M

Spanish 2.22M 0.51M 11.38M
French 0.44M 0.155M 5.08M
Dutch 0.2M 0.162M 4.62M

German 0.17M 0.116M 4.54M

Table 8: Statistics of the UMLS sets of positive term
pairs, nodes, and edges.

two categories: (i) information on marketed drugs
from the European Medicines Agency (EMEA,
12,761 entities) and (ii) titles of research articles
indexed in the MEDLINE database (8,781 entities).
Test set filtering reduces the number of entities to
5,533 and 3,534 for EMEA and MEDLINE parts,
respectively. We use the French concept names
from the UMLS as a dictionary.

XL-BEL (Liu et al., 2021b) is an automatically
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annotated dataset with concept mentions from
Wikipedia articles. Each mention is mapped to
a Wikipedia article using a hyperlink and assigned
a CUI based on the article’s metadata. Each lan-
guage is represented with 1,000 mentions resulting
in 10,000 mentions in total.

As shown in Table 9, there are 3 evaluation types
(Alekseev et al., 2022):

• Full: compute metrics on the test set as pro-
vided in the dataset itself;

• Filtered: remove from the set all entities that
are already present in the dictionary (exact
match);

• Filtered0.2: remove from the set all entities
where the character-based Levenshtein dis-
tance to the nearest neighbor in the dictionary
is under 0.2.

The filtered0.2 set contains two times fewer en-
tities compared to the filtered set. Hence, we
chose the full and filtered sets for experiments. All
sets, dictionaries, and evaluation scripts are avail-
able at https://github.com/AIRI-Institute/
medical_crossing.

Table 9: Statistics of multilingual corpora user for the
evaluation.

Dataset # in
full
set

Avg. len
in chars

% with
numer-
als

Filtered
set

Entity mentions
Mantra (de) 201 17.62 0.50 107
Mantra (en) 452 16.42 1.11 126
Mantra (es) 166 19.67 2.41 65
Mantra (fr) 222 17.64 0.45 99
Mantra (nl) 127 16.06 0.00 65

CANTEMIST 10031 18.73 6.92 3268
CodiEsp-D 10874 15.84 1.05 3449

Concepts
Mantra (de) 169 - - 97
Mantra (en) 373 - - 119
Mantra (es) 147 - - 69
Mantra (fr) 185 - - 83
Mantra (nl) 117 - - 62

CANTEMIST 657 - - 364
CodiEsp-D 2206 - - 1142

C Hyperparameter settings

A list of hyperparameter values used to train BERG-
AMOT models is presented in Table 10. We
adopted the parameters of the MS-loss from Sap-
BERT for fair comparison. For the DGI weight

λdgi, we found the best value from the list (0.01,
0.1, 1.0).

Table 10: BERGAMOT’s hyperparameter values

Hyperparameter name Value

Graph encoder hidden size 768
Number of neighbors 3
Number of graph encoder layers 3
GAT’s number of attention heads 2
Weight λdgi 0.1
Hard pairs miner’s margin 0.2
α in MS loss 2
β in MS loss 50
ϵ in MS loss 0.5
Learning rate 2 · 10−5

Multilingual models’ batch size 256
Monolingual models’ batch size 128
Multilingual models’ # of epochs 1
Monolingual models’ # of epochs 2

Tab. 10 lists BERGAMOT’s hyperparameter val-
ues used throughout our experiments.

D Question Asnwering and Textual
Entailment data

BioASQ BioASQ (Biomedical Question Answer-
ing) is a widely recognized dataset in the biomed-
ical domain, specifically designed for evaluating
question answering systems. Following (Gu et al.,
2022), we restrict the dataset to yes/no questions.
We use the official train/dev/test split where each
contains 670/75/140 questions respectively.

PubMedQA Similar to BioASQ, the PubMedQA
dataset as well presents questions with limited num-
ber of answers. In contrast to the previous dataset,
the answers to the questions in PubMedQA are se-
lected from yes, no, or maybe. We use the original
train/dev/test split with 450, 50, and 500 questions,
respectively.

MedNLI MedNLI (Medical Natural Language
Inference) is a specialized dataset designed to facil-
itate research in natural language inference within
the medical and healthcare domain. It consists of
pairs of sentences, where each pair comprises a
premise and a hypothesis. The premise represents
a clinical or biomedical context, while the hypoth-
esis is a medical statement or claim that may or
may not logically follow from the premise. Each
sentence pair is annotated with one of three labels:
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"entailment," indicating that the hypothesis can
be logically inferred from the premise; "contradic-
tion," suggesting that the hypothesis contradicts the
information in the premise; and "neutral," signify-
ing that there is no logical relationship between the
two sentences. The dataset comprises a total of
12,627 sentence pairs in the training set and 1,422
sentence pairs in the testing set.

SciTail The SciTail dataset is similar to the
MedNLI dataset was designed for the task of nat-
ural language inference. Except that it covers a
broader scientific domain. The train part of the
corpora contains 24900 sentence pairs and the test
part of the corpora contains 2126.

E Models for Comparison

• XLM-R (Roberts et al., 2017) – checkpoint
xlm-roberta-base (the Hugging Face Hub)

• SapBERT (Liu et al., 2021a,b) – SapBERT-
UMLS-2020AB-all-lang-from-XLMR (the
Hugging Face Hub)

• CODER (Yuan et al., 2022) – coder_all (the
Hugging Face Hub)

• Supervised SOTA (Alekseev et al., 2022)
–the results of SapBERT+mcn-fz4 are
directly obtained from the authors’ pa-
per. Three versions were fine-tuned using
SapBERT-UMLS-2020AB-all-lang-from-XLMR:
SapBERT+mcn-fz4, SapBERT+mcn-fz10, and
SapBERT+mcn. The first one shows slightly
better results in their paper.

F Hardware and software specification

Table 11: Hardware specification of the machine used
to conduct our experiments

Device Specification

CPU 8x Intel Xeon Gold 6152 2.1-3.7
Ghz (2 cores each)

GPU 4x NVIDIA Tesla V100 32GB
RAM 768 Gb
Disk space 5 Tb

To implement, train, and evaluate our models,
we used the version 1.11.0 of PyTorch (Paszke
et al., 2019) with CUDA 11.3 (Nickolls et al., 2008)
support. To implement graph neural networks, we
used PyTorch Geometric (Fey and Lenssen, 2019)

version 2.0.4. The training of each multilingual
BERGAMOT model took up to 20 hours on the
machine with the hardware specification described
in Table 11.

G Examples of predictions

We provide a few examples of SapBERT’s and
BERGAMOT’s predictions on the English Mantra
in Table 12. The results show that SapBERT out-
performs BERGAMOT when a true concept in a
vocabulary has an extensive textual name. When
a golden concept has a short name only, text-only
SapBERT fails to produce good entity representa-
tions, which is not the case for BERGAMOT. Thus,
the provided examples let us suggest that BERG-
AMOT does not only capture semantic and lexical
similarity between entity and concept strings but
also has additional intuition of what is a concept
from the UMLS knowledge base.

4642

https://huggingface.co/xlm-roberta-base
https://huggingface.co/cambridgeltl/SapBERT-UMLS-2020AB-all-lang-from-XLMR
https://huggingface.co/cambridgeltl/SapBERT-UMLS-2020AB-all-lang-from-XLMR
https://huggingface.co/cambridgeltl/SapBERT-UMLS-2020AB-all-lang-from-XLMR
https://huggingface.co/GanjinZero/coder_all
https://huggingface.co/GanjinZero/coder_all


Mention SapBERT predic-
tion

BERGAMOT pre-
diction

True concept Winner

mixed collagen dis-
ease

collagen dis connective tissue
dis mixed

connective tissue
dis mixed

BERGAMOT

uveitic ectatic qualifier
value

uveitis disorder uveitis disorder BERGAMOT

double uterus uterus didelphus
disorder

doubling of uterus
nos disorder

doubling of uterus
nos disorder

BERGAMOT

hygiene ability to perform
personal hygiene
activity observable
entity

personal hygiene
finding procedure

ability to perform
personal hygiene
activity observable
entity

SapBERT

functional bowel
disorders

functional disorder
of intestine disorder

x psychogenic ibs functional disorder
of intestine disorder

SapBERT

Table 12: Sevaral SapBERT’s and BERGAMOT’s predictions on the English Mantra.
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