NCUEE-NLP at SemEval-2023 Task 8: Identifying Medical Causal Claims and Extracting PIO Frames Using the Transformer Models

Lung-Hao Lee, Yuan-Hao Cheng, Jen-Hao Yang, Kao-Yuan Tien


Abstract
This study describes the model design of the NCUEE-NLP system for the SemEval-2023 Task 8. We use the pre-trained transformer models and fine-tune the task datasets to identify medical causal claims and extract population, intervention, and outcome elements in a Reddit post when a claim is given. Our best system submission for the causal claim identification subtask achieved a F1-score of 70.15%. Our best submission for the PIO frame extraction subtask achieved F1-scores of 37.78% for Population class, 43.58% for Intervention class, and 30.67% for Outcome class, resulting in a macro-averaging F1-score of 37.34%. Our system evaluation results ranked second position among all participating teams.
Anthology ID:
2023.semeval-1.42
Volume:
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
Month:
July
Year:
2023
Address:
Toronto, Canada
Editors:
Atul Kr. Ojha, A. Seza Doğruöz, Giovanni Da San Martino, Harish Tayyar Madabushi, Ritesh Kumar, Elisa Sartori
Venue:
SemEval
SIG:
SIGLEX
Publisher:
Association for Computational Linguistics
Note:
Pages:
312–317
Language:
URL:
https://aclanthology.org/2023.semeval-1.42
DOI:
10.18653/v1/2023.semeval-1.42
Bibkey:
Cite (ACL):
Lung-Hao Lee, Yuan-Hao Cheng, Jen-Hao Yang, and Kao-Yuan Tien. 2023. NCUEE-NLP at SemEval-2023 Task 8: Identifying Medical Causal Claims and Extracting PIO Frames Using the Transformer Models. In Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023), pages 312–317, Toronto, Canada. Association for Computational Linguistics.
Cite (Informal):
NCUEE-NLP at SemEval-2023 Task 8: Identifying Medical Causal Claims and Extracting PIO Frames Using the Transformer Models (Lee et al., SemEval 2023)
Copy Citation:
PDF:
https://preview.aclanthology.org/nschneid-patch-3/2023.semeval-1.42.pdf