Robust MT Evaluation with Sentence-level Multilingual Augmentation
Duarte Alves, Ricardo Rei, Ana C Farinha, José G. C. de Souza, André F. T. Martins
Abstract
Automatic translations with critical errors may lead to misinterpretations and pose several risks for the user. As such, it is important that Machine Translation (MT) Evaluation systems are robust to these errors in order to increase the reliability and safety of Machine Translation systems. Here we introduce SMAUG a novel Sentence-level Multilingual AUGmentation approach for generating translations with critical errors and apply this approach to create a test set to evaluate the robustness of MT metrics to these errors. We show that current State-of-the-Art metrics are improving their capability to distinguish translations with and without critical errors and to penalize the first accordingly. We also show that metrics tend to struggle with errors related to named entities and numbers and that there is a high variance in the robustness of current methods to translations with critical errors.- Anthology ID:
- 2022.wmt-1.43
- Volume:
- Proceedings of the Seventh Conference on Machine Translation (WMT)
- Month:
- December
- Year:
- 2022
- Address:
- Abu Dhabi, United Arab Emirates (Hybrid)
- Editors:
- Philipp Koehn, Loïc Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Alexander Fraser, Markus Freitag, Yvette Graham, Roman Grundkiewicz, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Tom Kocmi, André Martins, Makoto Morishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, Matteo Negri, Aurélie Névéol, Mariana Neves, Martin Popel, Marco Turchi, Marcos Zampieri
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 469–478
- Language:
- URL:
- https://aclanthology.org/2022.wmt-1.43
- DOI:
- Cite (ACL):
- Duarte Alves, Ricardo Rei, Ana C Farinha, José G. C. de Souza, and André F. T. Martins. 2022. Robust MT Evaluation with Sentence-level Multilingual Augmentation. In Proceedings of the Seventh Conference on Machine Translation (WMT), pages 469–478, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.
- Cite (Informal):
- Robust MT Evaluation with Sentence-level Multilingual Augmentation (Alves et al., WMT 2022)
- PDF:
- https://preview.aclanthology.org/nschneid-patch-3/2022.wmt-1.43.pdf