FINDINGS OF THE IWSLT 2021 EVALUATION CAMPAIGN
Antonios Anastasopoulos, Ondřej Bojar, Jacob Bremerman, Roldano Cattoni, Maha Elbayad, Marcello Federico, Xutai Ma, Satoshi Nakamura, Matteo Negri, Jan Niehues, Juan Pino, Elizabeth Salesky, Sebastian Stüker, Katsuhito Sudoh, Marco Turchi, Alexander Waibel, Changhan Wang, Matthew Wiesner
Abstract
The evaluation campaign of the International Conference on Spoken Language Translation (IWSLT 2021) featured this year four shared tasks: (i) Simultaneous speech translation, (ii) Offline speech translation, (iii) Multilingual speech translation, (iv) Low-resource speech translation. A total of 22 teams participated in at least one of the tasks. This paper describes each shared task, data and evaluation metrics, and reports results of the received submissions.- Anthology ID:
- 2021.iwslt-1.1
- Volume:
- Proceedings of the 18th International Conference on Spoken Language Translation (IWSLT 2021)
- Month:
- August
- Year:
- 2021
- Address:
- Bangkok, Thailand (online)
- Editors:
- Marcello Federico, Alex Waibel, Marta R. Costa-jussà, Jan Niehues, Sebastian Stuker, Elizabeth Salesky
- Venue:
- IWSLT
- SIG:
- SIGSLT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 1–29
- Language:
- URL:
- https://aclanthology.org/2021.iwslt-1.1
- DOI:
- 10.18653/v1/2021.iwslt-1.1
- Cite (ACL):
- Antonios Anastasopoulos, Ondřej Bojar, Jacob Bremerman, Roldano Cattoni, Maha Elbayad, Marcello Federico, Xutai Ma, Satoshi Nakamura, Matteo Negri, Jan Niehues, Juan Pino, Elizabeth Salesky, Sebastian Stüker, Katsuhito Sudoh, Marco Turchi, Alexander Waibel, Changhan Wang, and Matthew Wiesner. 2021. FINDINGS OF THE IWSLT 2021 EVALUATION CAMPAIGN. In Proceedings of the 18th International Conference on Spoken Language Translation (IWSLT 2021), pages 1–29, Bangkok, Thailand (online). Association for Computational Linguistics.
- Cite (Informal):
- FINDINGS OF THE IWSLT 2021 EVALUATION CAMPAIGN (Anastasopoulos et al., IWSLT 2021)
- PDF:
- https://preview.aclanthology.org/nschneid-patch-3/2021.iwslt-1.1.pdf
- Data
- CoVoST, LibriSpeech, MuST-C