Abstract
Many researchers have tried to predict the accuracies of extrinsic evaluation by using intrinsic evaluation to evaluate word embedding. The relationship between intrinsic and extrinsic evaluation, however, has only been studied with simple correlation analysis, which has difficulty capturing complex cause-effect relationships and integrating external factors such as the hyperparameters of word embedding. To tackle this problem, we employ partial least squares path modeling (PLS-PM), a method of structural equation modeling developed for causal analysis. We propose a causal diagram consisting of the evaluation results on the BATS, VecEval, and SentEval datasets, with a causal hypothesis that linguistic knowledge encoded in word embedding contributes to solving downstream tasks. Our PLS-PM models are estimated with 600 word embeddings, and we prove the existence of causal relations between linguistic knowledge evaluated on BATS and the accuracies of downstream tasks evaluated on VecEval and SentEval in our PLS-PM models. Moreover, we show that the PLS-PM models are useful for analyzing the effect of hyperparameters, including the training algorithm, corpus, dimension, and context window, and for validating the effectiveness of intrinsic evaluation.