There exists a wide variety of efficiency methods for natural language processing (NLP) tasks, such as pruning, distillation, dynamic inference, quantization, etc. From a different perspective, we can consider an efficiency method as an operator applied on a model. Naturally, we may construct a pipeline of operators, i.e., to apply multiple efficiency methods on the model sequentially. In this paper, we study the plausibility of this idea, and more importantly, the commutativity and cumulativeness of efficiency operators. We make two interesting observations from our experiments: (1) The operators are commutative—the order of efficiency methods within the pipeline has little impact on the final results; (2) The operators are also cumulative—the final results of combining several efficiency methods can be estimated by combining the results of individual methods. These observations deepen our understanding of efficiency operators and provide useful guidelines for building them in real-world applications.
Deep neural networks (DNNs) are often used for text classification due to their high accuracy. However, DNNs can be computationally intensive, requiring millions of parameters and large amounts of labeled data, which can make them expensive to use, to optimize, and to transfer to out-of-distribution (OOD) cases in practice. In this paper, we propose a non-parametric alternative to DNNs that’s easy, lightweight, and universal in text classification: a combination of a simple compressor like gzip with a k-nearest-neighbor classifier. Without any training parameters, our method achieves results that are competitive with non-pretrained deep learning methods on six in-distribution datasets.It even outperforms BERT on all five OOD datasets, including four low-resource languages. Our method also excels in the few-shot setting, where labeled data are too scarce to train DNNs effectively.
Diffusion models are a milestone in text-to-image generation, but they remain poorly understood, lacking interpretability analyses. In this paper, we perform a text-image attribution analysis on Stable Diffusion, a recently open-sourced model. To produce attribution maps, we upscale and aggregate cross-attention maps in the denoising module, naming our method DAAM. We validate it by testing its segmentation ability on nouns, as well as its generalized attribution quality on all parts of speech, rated by humans. On two generated datasets, we attain a competitive 58.8-64.8 mIoU on noun segmentation and fair to good mean opinion scores (3.4-4.2) on generalized attribution. Then, we apply DAAM to study the role of syntax in the pixel space across head–dependent heat map interaction patterns for ten common dependency relations. We show that, for some relations, the head map consistently subsumes the dependent, while the opposite is true for others. Finally, we study several semantic phenomena, focusing on feature entanglement; we find that the presence of cohyponyms worsens generation quality by 9%, and descriptive adjectives attend too broadly. We are the first to interpret large diffusion models from a visuolinguistic perspective, which enables future research. Our code is at https://github.com/castorini/daam.
Fine-tuned pre-trained transformers achieve the state of the art in passage reranking. Unfortunately, how they make their predictions remains vastly unexplained, especially at the end-to-end, input-to-output level. Little known is how tokens, layers, and passages precisely contribute to the final prediction. In this paper, we address this gap by leveraging the recently developed information bottlenecks for attribution (IBA) framework. On BERT-based models for passage reranking, we quantitatively demonstrate the framework’s veracity in extracting attribution maps, from which we perform detailed, token-wise analysis about how predictions are made. Overall, we find that BERT still cares about exact token matching for reranking; the [CLS] token mainly gathers information for predictions at the last layer; top-ranked passages are robust to token removal; and BERT fine-tuned on MSMARCO has positional bias towards the start of the passage.
This work proposes the use of a pretrained sequence-to-sequence model for document ranking. Our approach is fundamentally different from a commonly adopted classification-based formulation based on encoder-only pretrained transformer architectures such as BERT. We show how a sequence-to-sequence model can be trained to generate relevance labels as “target tokens”, and how the underlying logits of these target tokens can be interpreted as relevance probabilities for ranking. Experimental results on the MS MARCO passage ranking task show that our ranking approach is superior to strong encoder-only models. On three other document retrieval test collections, we demonstrate a zero-shot transfer-based approach that outperforms previous state-of-the-art models requiring in-domain cross-validation. Furthermore, we find that our approach significantly outperforms an encoder-only architecture in a data-poor setting. We investigate this observation in more detail by varying target tokens to probe the model’s use of latent knowledge. Surprisingly, we find that the choice of target tokens impacts effectiveness, even for words that are closely related semantically. This finding sheds some light on why our sequence-to-sequence formulation for document ranking is effective. Code and models are available at pygaggle.ai.
Pretrained transformers achieve the state of the art across tasks in natural language processing, motivating researchers to investigate their inner mechanisms. One common direction is to understand what features are important for prediction. In this paper, we apply information bottlenecks to analyze the attribution of each feature for prediction on a black-box model. We use BERT as the example and evaluate our approach both quantitatively and qualitatively. We show the effectiveness of our method in terms of attribution and the ability to provide insight into how information flows through layers. We demonstrate that our technique outperforms two competitive methods in degradation tests on four datasets. Code is available at https://github.com/bazingagin/IBA.
We present a PaperRobot who performs as an automatic research assistant by (1) conducting deep understanding of a large collection of human-written papers in a target domain and constructing comprehensive background knowledge graphs (KGs); (2) creating new ideas by predicting links from the background KGs, by combining graph attention and contextual text attention; (3) incrementally writing some key elements of a new paper based on memory-attention networks: from the input title along with predicted related entities to generate a paper abstract, from the abstract to generate conclusion and future work, and finally from future work to generate a title for a follow-on paper. Turing Tests, where a biomedical domain expert is asked to compare a system output and a human-authored string, show PaperRobot generated abstracts, conclusion and future work sections, and new titles are chosen over human-written ones up to 30%, 24% and 12% of the time, respectively.
We present a neural recommendation model for Chengyu, which is a special type of Chinese idiom. Given a query, which is a sentence with an empty slot where the Chengyu is taken out, our model will recommend the best Chengyu candidate that best fits the slot context. The main challenge lies in that the literal meaning of a Chengyu is usually very different from it’s figurative meaning. We propose a new neural approach to leverage the definition of each Chengyu and incorporate it as background knowledge. Experiments on both Chengyu cloze test and coherence checking in college entrance exams show that our system achieves 89.5% accuracy on cloze test and outperforms human subjects who attended competitive universities in China. We will make all of our data sets and resources publicly available as a new benchmark for research purposes.
We aim to automatically generate natural language descriptions about an input structured knowledge base (KB). We build our generation framework based on a pointer network which can copy facts from the input KB, and add two attention mechanisms: (i) slot-aware attention to capture the association between a slot type and its corresponding slot value; and (ii) a new table position self-attention to capture the inter-dependencies among related slots. For evaluation, besides standard metrics including BLEU, METEOR, and ROUGE, we propose a KB reconstruction based metric by extracting a KB from the generation output and comparing it with the input KB. We also create a new data set which includes 106,216 pairs of structured KBs and their corresponding natural language descriptions for two distinct entity types. Experiments show that our approach significantly outperforms state-of-the-art methods. The reconstructed KB achieves 68.8% - 72.6% F-score.