Zhehao Zhang


2023

pdf
Mitigating Biases in Hate Speech Detection from A Causal Perspective
Zhehao Zhang | Jiaao Chen | Diyi Yang
Findings of the Association for Computational Linguistics: EMNLP 2023

Nowadays, many hate speech detectors are built to automatically detect hateful content. However, their training sets are sometimes skewed towards certain stereotypes (e.g., race or religion-related). As a result, the detectors are prone to depend on some shortcuts for predictions. Previous works mainly focus on token-level analysis and heavily rely on human experts’ annotations to identify spurious correlations, which is not only costly but also incapable of discovering higher-level artifacts. In this work, we use grammar induction to find grammar patterns for hate speech and analyze this phenomenon from a causal perspective. Concretely, we categorize and verify different biases based on their spuriousness and influence on the model prediction. Then, we propose two mitigation approaches including Multi-Task Intervention and Data-Specific Intervention based on these confounders. Experiments conducted on 9 hate speech datasets demonstrate the effectiveness of our approaches.

pdf
CRT-QA: A Dataset of Complex Reasoning Question Answering over Tabular Data
Zhehao Zhang | Xitao Li | Yan Gao | Jian-Guang Lou
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) show powerful reasoning abilities on various text-based tasks. However, their reasoning capability on structured data such as tables has not been systematically explored. In this work, we first establish a comprehensive taxonomy of reasoning and operation types for tabular data analysis. Then, we construct a complex reasoning QA dataset over tabular data, named CRT-QA dataset (Complex Reasoning QA over Tabular data), with the following unique features: (1) it is the first Table QA dataset with multi-step operation and informal reasoning; (2) it contains fine-grained annotations on questions’ directness, composition types of sub-questions, and human reasoning paths which can be used to conduct a thorough investigation on LLMs’ reasoning ability; (3) it contains a collection of unanswerable and indeterminate questions that commonly arise in real-world situations. We further introduce an efficient and effective tool-augmented method, named ARC (Auto-exemplar-guided Reasoning with Code), to use external tools such as Pandas to solve table reasoning tasks without handcrafted demonstrations. The experiment results show that CRT-QA presents a strong challenge for baseline methods and ARC achieves the best result.