We present Superlim, a multi-task NLP benchmark and analysis platform for evaluating Swedish language models, a counterpart to the English-language (Super)GLUE suite. We describe the dataset, the tasks, the leaderboard and report the baseline results yielded by a reference implementation. The tested models do not approach ceiling performance on any of the tasks, which suggests that Superlim is truly difficult, a desirable quality for a benchmark. We address methodological challenges, such as mitigating the Anglocentric bias when creating datasets for a less-resourced language; choosing the most appropriate measures; documenting the datasets and making the leaderboard convenient and transparent. We also highlight other potential usages of the dataset, such as, for instance, the evaluation of cross-lingual transfer learning.
We train and test five open-source taggers, which use different methods, on three Swedish corpora, which are of comparable size but use different tagsets. The KB-Bert tagger achieves the highest accuracy for part-of-speech and morphological tagging, while being fast enough for practical use. We also compare the performance across tagsets and across different genres in one of the corpora. We perform manual error analysis and perform a statistical analysis of factors which affect how difficult specific tags are. Finally, we test ensemble methods, showing that a small (but not significant) improvement over the best-performing tagger can be achieved.
We introduce the SweWinogender test set, a diagnostic dataset to measure gender bias in coreference resolution. It is modelled after the English Winogender benchmark, and is released with reference statistics on the distribution of men and women between occupations and the association between gender and occupation in modern corpus material. The paper discusses the design and creation of the dataset, and presents a small investigation of the supplementary statistics.
We investigate a transition-based parser that uses Eukalyptus, a function-tagged constituent treebank for Swedish which includes discontinuous constituents. In addition, we show that the accuracy of this parser can be improved by using a multitask learning architecture that makes it possible to train the parser on additional treebanks that use other annotation models.
We describe the word sense annotation layer in Eukalyptus, a freely available five-domain corpus of contemporary Swedish with several annotation layers. The annotation uses the SALDO lexicon to define the sense inventory, and allows word sense annotation of compound segments and multiword units. We give an overview of the new annotation tool developed for this project, and finally present an analysis of the inter-annotator agreement between two annotators.
In this paper we describe and evaluate a tool for paradigm induction and lexicon extraction that has been applied to Old Swedish. The tool is semi-supervised and uses a small seed lexicon and unannotated corpora to derive full inflection tables for input lemmata. In the work presented here, the tool has been modified to deal with the rich spelling variation found in Old Swedish texts. We also present some initial experiments, which are the first steps towards creating a large-scale morphology for Old Swedish.