Code generation models have achieved impressive performance. However, they tend to be brittle as slight edits to a prompt could lead to very different generations; these robustness properties, critical for user experience when deployed in real-life applications, are not well understood. Most existing works on robustness in text or code tasks have focused on classification, while robustness in generation tasks is an uncharted area and to date there is no comprehensive benchmark for robustness in code generation. In this paper, we propose ReCode, a comprehensive robustness evaluation benchmark for code generation models. We customize over 30 transformations specifically for code on docstrings, function and variable names, code syntax, and code format. They are carefully designed to be natural in real-life coding practice, preserve the original semantic meaning, and thus provide multifaceted assessments of a model’s robustness performance. With human annotators, we verified that over 90% of the perturbed prompts do not alter the semantic meaning of the original prompt. In addition, we define robustness metrics for code generation models considering the worst-case behavior under each type of perturbation, taking advantage of the fact that executing the generated code can serve as objective evaluation. We demonstrate ReCode on SOTA models using HumanEval, MBPP, as well as function completion tasks derived from them. Interesting observations include: better robustness for CodeGen over InCoder and GPT-J; models are most sensitive to syntax perturbations; more challenging robustness evaluation on MBPP over HumanEval.
Natural language often contains ambiguities that can lead to misinterpretation and miscommunication. While humans can handle ambiguities effectively by asking clarifying questions and/or relying on contextual cues and common-sense knowledge, resolving ambiguities can be notoriously hard for machines. In this work, we study ambiguities that arise in text-to-image generative models. We curate the Text-to-image Ambiguity Benchmark (TAB) dataset to study different types of ambiguities in text-to-image generative models. We then propose the Text-to-ImagE Disambiguation (TIED) framework to disambiguate the prompts given to the text-to-image generative models by soliciting clarifications from the end user. Through automatic and human evaluations, we show the effectiveness of our framework in generating more faithful images aligned with end user intention in the presence of ambiguities.
Large language models trained on code have shown great potential to increase productivity of software developers. Several execution-based benchmarks have been proposed to evaluate functional correctness of model-generated code on simple programming problems. Nevertheless, it is expensive to perform the same evaluation on complex real-world projects considering the execution cost. On the other hand, static analysis tools such as linters, which can detect errors without running the program, haven’t been well explored for evaluating code generation models. In this work, we propose a static evaluation framework to quantify static errors in Python code completions, by leveraging Abstract Syntax Trees. Compared with execution-based evaluation, our method is not only more efficient, but also applicable to code in the wild. For experiments, we collect code context from open source repos to generate one million function bodies using public models. Our static analysis reveals that Undefined Name and Unused Variable are the most common errors among others made by language models. Through extensive studies, we also show the impact of sampling temperature, model size, and context on static errors in code completions.
Multiple metrics have been introduced to measure fairness in various natural language processing tasks. These metrics can be roughly categorized into two categories: 1) extrinsic metrics for evaluating fairness in downstream applications and 2) intrinsic metrics for estimating fairness in upstream contextualized language representation models. In this paper, we conduct an extensive correlation study between intrinsic and extrinsic metrics across bias notions using 19 contextualized language models. We find that intrinsic and extrinsic metrics do not necessarily correlate in their original setting, even when correcting for metric misalignments, noise in evaluation datasets, and confounding factors such as experiment configuration for extrinsic metrics.
Language models excel at generating coherent text, and model compression techniques such as knowledge distillation have enabled their use in resource-constrained settings. However, these models can be biased in multiple ways, including the unfounded association of male and female genders with gender-neutral professions. Therefore, knowledge distillation without any fairness constraints may preserve or exaggerate the teacher model’s biases onto the distilled model. To this end, we present a novel approach to mitigate gender disparity in text generation by learning a fair model during knowledge distillation. We propose two modifications to the base knowledge distillation based on counterfactual role reversal—modifying teacher probabilities and augmenting the training set. We evaluate gender polarity across professions in open-ended text generated from the resulting distilled and finetuned GPT–2 models and demonstrate a substantial reduction in gender disparity with only a minor compromise in utility. Finally, we observe that language models that reduce gender polarity in language generation do not improve embedding fairness or downstream classification fairness.
This paper presents a production Semi-Supervised Learning (SSL) pipeline based on the student-teacher framework, which leverages millions of unlabeled examples to improve Natural Language Understanding (NLU) tasks. We investigate two questions related to the use of unlabeled data in production SSL context: 1) how to select samples from a huge unlabeled data pool that are beneficial for SSL training, and 2) how does the selected data affect the performance of different state-of-the-art SSL techniques. We compare four widely used SSL techniques, Pseudo-label (PL), Knowledge Distillation (KD), Virtual Adversarial Training (VAT) and Cross-View Training (CVT) in conjunction with two data selection methods including committee-based selection and submodular optimization based selection. We further examine the benefits and drawbacks of these techniques when applied to intent classification (IC) and named entity recognition (NER) tasks, and provide guidelines specifying when each of these methods might be beneficial to improve large scale NLU systems.
Language model based pre-trained models such as BERT have provided significant gains across different NLP tasks. In this paper, we study different types of transformer based pre-trained models such as auto-regressive models (GPT-2), auto-encoder models (BERT), and seq2seq models (BART) for conditional data augmentation. We show that prepending the class labels to text sequences provides a simple yet effective way to condition the pre-trained models for data augmentation. Additionally, on three classification benchmarks, pre-trained Seq2Seq model outperforms other data augmentation methods in a low-resource setting. Further, we explore how different pre-trained model based data augmentation differs in-terms of data diversity, and how well such methods preserve the class-label information.
To address the lack of comparative evaluation of Human-in-the-Loop Topic Modeling (HLTM) systems, we implement and evaluate three contrasting HLTM modeling approaches using simulation experiments. These approaches extend previously proposed frameworks, including constraints and informed prior-based methods. Users should have a sense of control in HLTM systems, so we propose a control metric to measure whether refinement operations’ results match users’ expectations. Informed prior-based methods provide better control than constraints, but constraints yield higher quality topics.
New conversation topics and functionalities are constantly being added to conversational AI agents like Amazon Alexa and Apple Siri. As data collection and annotation is not scalable and is often costly, only a handful of examples for the new functionalities are available, which results in poor generalization performance. We formulate it as a Few-Shot Integration (FSI) problem where a few examples are used to introduce a new intent. In this paper, we study six feature space data augmentation methods to improve classification performance in FSI setting in combination with both supervised and unsupervised representation learning methods such as BERT. Through realistic experiments on two public conversational datasets, SNIPS, and the Facebook Dialog corpus, we show that data augmentation in feature space provides an effective way to improve intent classification performance in few-shot setting beyond traditional transfer learning approaches. In particular, we show that (a) upsampling in latent space is a competitive baseline for feature space augmentation (b) adding the difference between two examples to a new example is a simple yet effective data augmentation method.