2024
pdf
abs
LAraBench: Benchmarking Arabic AI with Large Language Models
Ahmed Abdelali
|
Hamdy Mubarak
|
Shammur Chowdhury
|
Maram Hasanain
|
Basel Mousi
|
Sabri Boughorbel
|
Samir Abdaljalil
|
Yassine El Kheir
|
Daniel Izham
|
Fahim Dalvi
|
Majd Hawasly
|
Nizi Nazar
|
Youssef Elshahawy
|
Ahmed Ali
|
Nadir Durrani
|
Natasa Milic-Frayling
|
Firoj Alam
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent advancements in Large Language Models (LLMs) have significantly influenced the landscape of language and speech research. Despite this progress, these models lack specific benchmarking against state-of-the-art (SOTA) models tailored to particular languages and tasks. LAraBench addresses this gap for Arabic Natural Language Processing (NLP) and Speech Processing tasks, including sequence tagging and content classification across different domains. We utilized models such as GPT-3.5-turbo, GPT-4, BLOOMZ, Jais-13b-chat, Whisper, and USM, employing zero and few-shot learning techniques to tackle 33 distinct tasks across 61 publicly available datasets. This involved 98 experimental setups, encompassing ~296K data points, ~46 hours of speech, and 30 sentences for Text-to-Speech (TTS). This effort resulted in 330+ sets of experiments. Our analysis focused on measuring the performance gap between SOTA models and LLMs. The overarching trend observed was that SOTA models generally outperformed LLMs in zero-shot learning, with a few exceptions. Notably, larger computational models with few-shot learning techniques managed to reduce these performance gaps. Our findings provide valuable insights into the applicability of LLMs for Arabic NLP and speech processing tasks.
pdf
abs
LLMeBench: A Flexible Framework for Accelerating LLMs Benchmarking
Fahim Dalvi
|
Maram Hasanain
|
Sabri Boughorbel
|
Basel Mousi
|
Samir Abdaljalil
|
Nizi Nazar
|
Ahmed Abdelali
|
Shammur Absar Chowdhury
|
Hamdy Mubarak
|
Ahmed Ali
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations
The recent development and success of Large Language Models (LLMs) necessitate an evaluation of their performance across diverse NLP tasks in different languages. Although several frameworks have been developed and made publicly available, their customization capabilities for specific tasks and datasets are often complex for different users. In this study, we introduce the LLMeBench framework, which can be seamlessly customized to evaluate LLMs for any NLP task, regardless of language. The framework features generic dataset loaders, several model providers, and pre-implements most standard evaluation metrics. It supports in-context learning with zero- and few-shot settings. A specific dataset and task can be evaluated for a given LLM in less than 20 lines of code while allowing full flexibility to extend the framework for custom datasets, models, or tasks. The framework has been tested on 31 unique NLP tasks using 53 publicly available datasets within 90 experimental setups, involving approximately 296K data points. We open-sourced LLMeBench for the community (https://github.com/qcri/LLMeBench/) and a video demonstrating the framework is available online (https://youtu.be/9cC2m_abk3A).
pdf
abs
LLMs for Low Resource Languages in Multilingual, Multimodal and Dialectal Settings
Firoj Alam
|
Shammur Absar Chowdhury
|
Sabri Boughorbel
|
Maram Hasanain
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: Tutorial Abstracts
The recent breakthroughs in Artificial Intelligence (AI) can be attributed to the remarkable performance of Large Language Models (LLMs) across a spectrum of research areas (e.g., machine translation, question-answering, automatic speech recognition, text-to-speech generation) and application domains (e.g., business, law, healthcare, education, and psychology). The success of these LLMs largely de- pends on specific training techniques, most notably instruction tuning, RLHF, and subsequent prompting to achieve the desired output. As the development of such LLMs continues to increase in both closed and open settings, evaluation has become crucial for understanding their generalization capabilities across different tasks, modalities, languages, and dialects. This evaluation process is tightly coupled with prompting, which plays a key role in obtain- ing better outputs. There has been attempts to evaluate such models focusing on diverse tasks, languages, and dialects, which suggests that the capabilities of LLMs are still limited to medium-to-low-resource languages due to the lack of representative datasets. The tutorial offers an overview of this emerging research area. We explore the capabilities of LLMs in terms of their performance, zero- and few-shot settings, fine-tuning, instructions tuning, and close vs. open models with a special emphasis on low-resource settings. In addition to LLMs for standard NLP tasks, we will focus on speech and multimodality.
2023
pdf
abs
Analyzing Multilingual Competency of LLMs in Multi-Turn Instruction Following: A Case Study of Arabic
Sabri Boughorbel
|
Majd Hawasly
Proceedings of ArabicNLP 2023
While significant progress has been made in benchmarking Large Language Models (LLMs) across various tasks, there is a lack of comprehensive evaluation of their abilities in responding to multi-turn instructions in less-commonly tested languages like Arabic. Our paper offers a detailed examination of the proficiency of open LLMs in such scenarios in Arabic. Utilizing a customized Arabic translation of the MT-Bench benchmark suite, we employ GPT-4 as a uniform evaluator for both English and Arabic queries to assess and compare the performance of the LLMs on various open-ended tasks. Our findings reveal variations in model responses on different task categories, e.g., logic vs. literacy, when instructed in English or Arabic. We find that fine-tuned base models using multilingual and multi-turn datasets could be competitive to models trained from scratch on multilingual data. Finally, we hypothesize that an ensemble of small, open LLMs could perform competitively to proprietary LLMs on the benchmark.