Qian-hui Zeng


2020

pdf
Headword-Oriented Entity Linking: A Special Entity Linking Task with Dataset and Baseline
Mu Yang | Chi-Yen Chen | Yi-Hui Lee | Qian-hui Zeng | Wei-Yun Ma | Chen-Yang Shih | Wei-Jhih Chen
Proceedings of the Twelfth Language Resources and Evaluation Conference

In this paper, we design headword-oriented entity linking (HEL), a specialized entity linking problem in which only the headwords of the entities are to be linked to knowledge bases; mention scopes of the entities do not need to be identified in the problem setting. This special task is motivated by the fact that in many articles referring to specific products, the complete full product names are rarely written; instead, they are often abbreviated to shorter, irregular versions or even just to their headwords, which are usually their product types, such as “stick” or “mask” in a cosmetic context. To fully design the special task, we construct a labeled cosmetic corpus as a public benchmark for this problem, and propose a product embedding model to address the task, where each product corresponds to a dense representation to encode the different information on products and their context jointly. Besides, to increase training data, we propose a special transfer learning framework in which distant supervision with heuristic patterns is first utilized, followed by supervised learning using a small amount of manually labeled data. The experimental results show that our model provides a strong benchmark performance on the special task.