Michael Rosenberg
2023
Transfer Knowledge from Natural Language to Electrocardiography: Can We Detect Cardiovascular Disease Through Language Models?
Jielin Qiu
|
William Han
|
Jiacheng Zhu
|
Mengdi Xu
|
Michael Rosenberg
|
Emerson Liu
|
Douglas Weber
|
Ding Zhao
Findings of the Association for Computational Linguistics: EACL 2023
Recent advancements in Large Language Models (LLMs) have drawn increasing attention since the learned embeddings pretrained on large-scale datasets have shown powerful ability in various downstream applications. However, whether the learned knowledge by LLMs can be transferred to clinical cardiology remains unknown. In this work, we aim to bridge this gap by transferring the knowledge of LLMs to clinical Electrocardiography (ECG). We propose an approach for cardiovascular disease diagnosis and automatic ECG diagnosis report generation. We also introduce an additional loss function by Optimal Transport (OT) to align the distribution between ECG and language embedding. The learned embeddings are evaluated on two downstream tasks: (1) automatic ECG diagnosis report generation, and (2) zero-shot cardiovascular disease detection. Our approach is able to generate high-quality cardiac diagnosis reports and also achieves competitive zero-shot classification performance even compared with supervised baselines, which proves the feasibility of transferring knowledge from LLMs to the cardiac domain.
Search
Co-authors
- Jielin Qiu 1
- William Han 1
- Jiacheng Zhu 1
- Mengdi Xu 1
- Emerson Liu 1
- show all...