Marcin Kurdziel
2018
Disambiguated skip-gram model
Karol Grzegorczyk
|
Marcin Kurdziel
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
We present disambiguated skip-gram: a neural-probabilistic model for learning multi-sense distributed representations of words. Disambiguated skip-gram jointly estimates a skip-gram-like context word prediction model and a word sense disambiguation model. Unlike previous probabilistic models for learning multi-sense word embeddings, disambiguated skip-gram is end-to-end differentiable and can be interpreted as a simple feed-forward neural network. We also introduce an effective pruning strategy for the embeddings learned by disambiguated skip-gram. This allows us to control the granularity of representations learned by our model. In experimental evaluation disambiguated skip-gram improves state-of-the are results in several word sense induction benchmarks.
2017
Binary Paragraph Vectors
Karol Grzegorczyk
|
Marcin Kurdziel
Proceedings of the 2nd Workshop on Representation Learning for NLP
Recently Le & Mikolov described two log-linear models, called Paragraph Vector, that can be used to learn state-of-the-art distributed representations of documents. Inspired by this work, we present Binary Paragraph Vector models: simple neural networks that learn short binary codes for fast information retrieval. We show that binary paragraph vectors outperform autoencoder-based binary codes, despite using fewer bits. We also evaluate their precision in transfer learning settings, where binary codes are inferred for documents unrelated to the training corpus. Results from these experiments indicate that binary paragraph vectors can capture semantics relevant for various domain-specific documents. Finally, we present a model that simultaneously learns short binary codes and longer, real-valued representations. This model can be used to rapidly retrieve a short list of highly relevant documents from a large document collection.
Search