Jiawen Zhu
2021
AutoChart: A Dataset for Chart-to-Text Generation Task
Jiawen Zhu
|
Jinye Ran
|
Roy Ka-Wei Lee
|
Zhi Li
|
Kenny Choo
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)
The analytical description of charts is an exciting and important research area with many applications in academia and industry. Yet, this challenging task has received limited attention from the computational linguistics research community. This paper proposes AutoChart, a large dataset for the analytical description of charts, which aims to encourage more research into this important area. Specifically, we offer a novel framework that generates the charts and their analytical description automatically. We conducted extensive human and machine evaluation on the generated charts and descriptions and demonstrate that the generated texts are informative, coherent, and relevant to the corresponding charts.
Search