Jani Järnfors
2021
Using BERT for choosing classifiers in Mandarin
Jani Järnfors
|
Guanyi Chen
|
Kees van Deemter
|
Rint Sybesma
Proceedings of the 14th International Conference on Natural Language Generation
Choosing the most suitable classifier in a linguistic context is a well-known problem in the production of Mandarin and many other languages. The present paper proposes a solution based on BERT, compares this solution to previous neural and rule-based models, and argues that the BERT model performs particularly well on those difficult cases where the classifier adds information to the text.