Hsiang-Fu Yu


2022

pdf
Extreme Zero-Shot Learning for Extreme Text Classification
Yuanhao Xiong | Wei-Cheng Chang | Cho-Jui Hsieh | Hsiang-Fu Yu | Inderjit Dhillon
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The eXtreme Multi-label text Classification (XMC) problem concerns finding most relevant labels for an input text instance from a large label set. However, the XMC setup faces two challenges: (1) it is not generalizable to predict unseen labels in dynamic environments, and (2) it requires a large amount of supervised (instance, label) pairs, which can be difficult to obtain for emerging domains. In this paper, we consider a more practical scenario called Extreme Zero-Shot XMC (EZ-XMC), in which no supervision is needed and merely raw text of instances and labels are accessible. Few-Shot XMC (FS-XMC), an extension to EZ-XMC with limited supervision is also investigated. To learn the semantic embeddings of instances and labels with raw text, we propose to pre-train Transformer-based encoders with self-supervised contrastive losses. Specifically, we develop a pre-training method MACLR, which thoroughly leverages the raw text with techniques including Multi-scale Adaptive Clustering, Label Regularization, and self-training with pseudo positive pairs. Experimental results on four public EZ-XMC datasets demonstrate that MACLR achieves superior performance compared to all other leading baseline methods, in particular with approximately 5-10% improvement in precision and recall on average. Moreover, we show that our pre-trained encoder can be further improved on FS-XMC when there are a limited number of ground-truth positive pairs in training. Our code is available at https://github.com/amzn/pecos/tree/mainline/examples/MACLR.

2018

pdf
Learning Word Embeddings for Low-Resource Languages by PU Learning
Chao Jiang | Hsiang-Fu Yu | Cho-Jui Hsieh | Kai-Wei Chang
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Word embedding is a key component in many downstream applications in processing natural languages. Existing approaches often assume the existence of a large collection of text for learning effective word embedding. However, such a corpus may not be available for some low-resource languages. In this paper, we study how to effectively learn a word embedding model on a corpus with only a few million tokens. In such a situation, the co-occurrence matrix is sparse as the co-occurrences of many word pairs are unobserved. In contrast to existing approaches often only sample a few unobserved word pairs as negative samples, we argue that the zero entries in the co-occurrence matrix also provide valuable information. We then design a Positive-Unlabeled Learning (PU-Learning) approach to factorize the co-occurrence matrix and validate the proposed approaches in four different languages.