Vision-language models (VLMs) have shown remarkable performance on visual reasoning tasks (e.g. attributes, location). While such tasks measure the requisite knowledge to ground and reason over a given visual instance, they do not, however, measure the ability of VLMs to retain and generalize such knowledge. In this work, we evaluate VLMs’ ability to acquire “visible” physical knowledge – the information that is easily accessible from images of static scenes, particularly along the dimensions of object color, size, and space. We build an automatic pipeline to derive a comprehensive knowledge resource for calibrating and probing these models. Our results indicate a severe gap between model and human performance across all three dimensions. Furthermore, we demonstrate that a caption pretrained LM significantly outperforms VLMs on both size and spatial tasks – highlighting that despite sufficient access to ground language with visual modality, they struggle to retain such knowledge.
Storytelling’s captivating potential makes it a fascinating research area, with implications for entertainment, education, therapy, and cognitive studies. In this paper, we propose Affective Story Generator (AffGen) for generating interesting narratives. AffGen introduces ‘intriguing twists’ in narratives by employing two novel techniques—Dynamic Beam Sizing and Affective Reranking. Dynamic Beam Sizing encourages less predictable, more captivating word choices using a contextual multi-arm bandit model. Affective Reranking prioritizes sentence candidates based on affect intensity. Our empirical evaluations, both automatic and human, demonstrate AffGen’s superior performance over existing baselines in generating affectively charged and interesting narratives. Our ablation study and analysis provide insights into the strengths and weaknesses of AffGen.
Reasoning with preconditions such as “glass can be used for drinking water unless the glass is shattered” remains an open problem for language models. The main challenge lies in the scarcity of preconditions data and the model’s lack of support for such reasoning. We present PInKS , Preconditioned Commonsense Inference with WeaK Supervision, an improved model for reasoning with preconditions through minimum supervision. We show, empirically and theoretically, that PInKS improves the results on benchmarks focused on reasoning with the preconditions of commonsense knowledge (up to 40% Macro-F1 scores). We further investigate PInKS through PAC-Bayesian informativeness analysis, precision measures, and ablation study.
Humans can seamlessly reason with circumstantial preconditions of commonsense knowledge. We understand that a glass is used for drinking water, unless the glass is broken or the water is toxic. Despite state-of-the-art (SOTA) language models’ (LMs) impressive performance on inferring commonsense knowledge, it is unclear whether they understand the circumstantial preconditions. To address this gap, we propose a novel challenge of reasoning with circumstantial preconditions. We collect a dataset, called PaCo, consisting of 12.4 thousand preconditions of commonsense statements expressed in natural language. Based on this dataset, we create three canonical evaluation tasks and use them to examine the capability of existing LMs to understand situational preconditions. Our results reveal a 10-30% gap between machine and human performance on our tasks, which shows that reasoning with preconditions is an open challenge.