Most of the existing Knowledge-based Question Answering (KBQA) methods first learn to map the given question to a query graph, and then convert the graph to an executable query to find the answer. The query graph is typically expanded progressively from the topic entity based on a sequence prediction model. In this paper, we propose a new solution to query graph generation that works in the opposite manner: we start with the entire knowledge base and gradually shrink it to the desired query graph. This approach improves both the efficiency and the accuracy of query graph generation, especially for complex multi-hop questions. Experimental results show that our method achieves state-of-the-art performance on ComplexWebQuestion (CWQ) dataset.
Further pre-training language models on in-domain data (domain-adaptive pre-training, DAPT) or task-relevant data (task-adaptive pre-training, TAPT) before fine-tuning has been shown to improve downstream tasks’ performances. However, in task-oriented dialog modeling, we observe that further pre-training MLM does not always boost the performance on a downstream task. We find that DAPT is beneficial in the low-resource setting, but as the fine-tuning data size grows, DAPT becomes less beneficial or even useless, and scaling the size of DAPT data does not help. Through Representational Similarity Analysis, we conclude that more data for fine-tuning yields greater change of the model’s representations and thus reduces the influence of initialization.
Most language understanding models in task-oriented dialog systems are trained on a small amount of annotated training data, and evaluated in a small set from the same distribution. However, these models can lead to system failure or undesirable output when being exposed to natural language perturbation or variation in practice. In this paper, we conduct comprehensive evaluation and analysis with respect to the robustness of natural language understanding models, and introduce three important aspects related to language understanding in real-world dialog systems, namely, language variety, speech characteristics, and noise perturbation. We propose a model-agnostic toolkit LAUG to approximate natural language perturbations for testing the robustness issues in task-oriented dialog. Four data augmentation approaches covering the three aspects are assembled in LAUG, which reveals critical robustness issues in state-of-the-art models. The augmented dataset through LAUG can be used to facilitate future research on the robustness testing of language understanding in task-oriented dialog.
We present an adaptation of RNN sequence models to the problem of multi-label classification for text, where the target is a set of labels, not a sequence. Previous such RNN models define probabilities for sequences but not for sets; attempts to obtain a set probability are after-thoughts of the network design, including pre-specifying the label order, or relating the sequence probability to the set probability in ad hoc ways. Our formulation is derived from a principled notion of set probability, as the sum of probabilities of corresponding permutation sequences for the set. We provide a new training objective that maximizes this set probability, and a new prediction objective that finds the most probable set on a test document. These new objectives are theoretically appealing because they give the RNN model freedom to discover the best label order, which often is the natural one (but different among documents). We develop efficient procedures to tackle the computation difficulties involved in training and prediction. Experiments on benchmark datasets demonstrate that we outperform state-of-the-art methods for this task.