Adir Rahamim


2023

pdf
Text Augmentation Using Dataset Reconstruction for Low-Resource Classification
Adir Rahamim | Guy Uziel | Esther Goldbraich | Ateret Anaby Tavor
Findings of the Association for Computational Linguistics: ACL 2023

In the deployment of real-world text classification models, label scarcity is a common problem and as the number of classes increases, this problem becomes even more complex. An approach to addressing this problem is by applying text augmentation methods. One of the more prominent methods involves using the text-generation capabilities of language models. In this paper, we propose Text AUgmentation by Dataset Reconstruction (TAU-DR), a novel method of data augmentation for text classification. We conduct experiments on several multi-class datasets, showing that our approach improves the current state-of-the-art techniques for data augmentation.